1
|
Holmes CM, Babasyan S, Wagner B. Neonatal and maternal upregulation of antileukoproteinase in horses. Front Immunol 2024; 15:1395030. [PMID: 38736885 PMCID: PMC11082313 DOI: 10.3389/fimmu.2024.1395030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction The end of gestation, ensuing parturition, and the neonatal period represent highly dynamic phases for immunological changes in both mother and offspring. The regulation of innate immune cells at the maternal-fetal interface during late term pregnancy, after birth, and during microbial colonization of the neonatal gut and other mucosal surfaces, is crucial for controlling inflammation and maintaining homeostasis. Innate immune cells and mucosal epithelial cells express antileukoproteinase (SLPI), which has anti-inflammatory and anti-protease activity that can regulate cellular activation. Methods Here, we developed and validated new monoclonal antibodies (mAbs) to characterize SLPI for the first time in horses. Peripheral blood and mucosal samples were collected from healthy adults horses and a cohort of mares and their foals directly following parturition to assess this crucial stage. Results First, we defined the cell types producing SLPI in peripheral blood by flow cytometry, highlighting the neutrophils and a subset of the CD14+ monocytes as SLPI secreting immune cells. A fluorescent bead-based assay was developed with the new SLPI mAbs and used to establish baseline concentrations for secreted SLPI in serum and secretion samples from mucosal surfaces, including saliva, nasal secretion, colostrum, and milk. This demonstrated constitutive secretion of SLPI in a variety of equine tissues, including high colostrum concentrations. Using immunofluorescence, we identified production of SLPI in mucosal tissue. Finally, longitudinal sampling of clinically healthy mares and foals allowed monitoring of serum SLPI concentrations. In neonates and postpartum mares, SLPI peaked on the day of parturition, with mares returning to the adult normal within a week and foals maintaining significantly higher SLPI secretion until three months of age. Conclusion This demonstrated a physiological systemic change in SLPI in both mares and their foals, particularly at the time around birth, likely contributing to the regulation of innate immune responses during this critical period.
Collapse
Affiliation(s)
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
3
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory leukocyte protease inhibitor protects against severe urinary tract infection in mice. mBio 2024; 15:e0255423. [PMID: 38270443 PMCID: PMC10865866 DOI: 10.1128/mbio.02554-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Rosen AL, Lint MA, Voelker DH, Gilbert NM, Tomera CP, Santiago-Borges J, Wallace MA, Hannan TJ, Burnham CAD, Hultgren SJ, Kau AL. Secretory Leukocyte Protease Inhibitor Protects Against Severe Urinary Tract Infection in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561753. [PMID: 37873489 PMCID: PMC10592744 DOI: 10.1101/2023.10.10.561753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a mouse model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with history of recent or recurrent UTI (rUTI), suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI protects against acute UTI in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.
Collapse
Affiliation(s)
- Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Dayne H. Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Nicole M. Gilbert
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Thomas J. Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Carey-Ann D. Burnham
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Pikwong F, Phutiyothin C, Chouyratchakarn W, Baipaywad P, Mongkolpathumrat P, Kumphune S. Gelatin-coated silicon oxide nanoparticles encapsulated recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduced cardiac cell death against an in vitro simulated ischaemia/reperfusion injury. Heliyon 2023; 9:e20150. [PMID: 37809945 PMCID: PMC10559932 DOI: 10.1016/j.heliyon.2023.e20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ischemic Heart Disease (IHD) is the main global cause of death. Previous studies indicated that recombinant human secretory leukocyte protease inhibitor (rhSLPI) exhibits a cardioprotective effect against myocardial ischaemia/reperfusion (I/R) injury. However, SLPI has a short half-life in vivo due to digestion by protease enzymes in circulation. The application of nanoparticle encapsulation could be beneficial for SLPI delivery. Several types of nanoparticles have been developed to encapsulate SLPI and applied in some disease models. However, silica nanoparticles for rhSLPI delivery, particularly on myocardial I/R injury, have never been studied. In this study, we aimed to fabricate gelatin-covered silica nanoparticles (GSNPs) to encapsulate rhSLPI and cardioprotective effect of GSNP-SLPI against an in vitro simulated ischaemia/reperfusion (sI/R). Silica dioxide nanoparticles (SNPs) were fabricated followed by incubation with 0.33 mg/mL of rhSLPI. Then, SNPs containing rhSLPI were coated with gelatin (GSNPs). The GSNPs and rhSLPI-GSNPs were characterized by particle size, zeta potential, and morphology scanning electron microscope (SEM). The concentration of rhSLPI in rhSLPI-GSNPs and drug release was determined by ELISA. Then, cytotoxicity and cardioprotective effect were determined by incubation of GSNPs or rhSLPI-GSNPs with rat cardiac myoblast cell line (H9c2) subjected to simulated ischaemia/reperfusion (sI/R). The results showed the particle size of SNPs, GSNPs, and rhSLPI-GSNPs was 273, 300, and 301 nm, with a zeta potential of -57.21, -22.40, and -24.50 mV, respectively. One milligram of rhSLPI-GSNPs contains 235 ng of rhSLPI. The rhSLPI-GSNPs showed no cytotoxicity on cardiac cells. Treatment with 10 μg/ml of rhSLPI-GSNPs could significantly reduce sI/R induced cardiac cell injury and death. In conclusion, this is the first study to show successful of fabricating novel rhSLPI-encapsulating gelatin-covered silica nanoparticles (rhSLPI-GSNPs) and the cardioprotective effects of rhSLPI-GSNPs against cardiac cell injury and death from myocardial ischaemia/reperfusion.
Collapse
Affiliation(s)
- Faprathan Pikwong
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Podsawee Mongkolpathumrat
- Cardio-Thoracic Technology program, Chulabhorn International College of Medicine, Thammasat University (Rangsit Center), Cooperative Learning Center, Piyachart 2, 99 Moo 18 Klong Luang, Rangsit, Pathumthani 12120, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| |
Collapse
|
7
|
Azzam SM, Abdel Rahman AAS, Ahmed-Farid OA, Abu El-Wafa WM, Salem GEM. Lipopolysaccharide induced neuroprotective effects of bacterial protease against Alzheimer's disease in male Wistar albino rats. Int J Biol Macromol 2023; 230:123260. [PMID: 36642360 DOI: 10.1016/j.ijbiomac.2023.123260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a highly severe neurodegenerative condition that affects the hippocampus and is characterized by memory loss and dementia. This investigation aims to determine the potential of a bacterial protease enzyme produced by a new mutant strain of bacteria (Bacillus cereus S6-3/UM90) to influence the rat behavioural, biochemical, histological, and immuno-histochemical functions induced by lipopolysaccharides (LPS) experimentally. The administration of LPS exhibited a decline in memory performance via Morris' Water Maze test along with an elevation of IL-6, IL-17, amino acid neurotransmitters, Adenosine monophosphate (AMP), and 8-OHdG, whereas a decrease in ATP (Adenosine Triphosphate), monoamine transmitters, AChE (acetylcholinesterase) and PC (phosphatidylcholine). Additionally, there was a notable increase in GFAP (glial fibrillary acidic protein) and p-Tau protein immuno-expression levels along with obvious histological lesions in the hippocampal CA3 region. Moreover, the administration of protease or Donepezil restored the measured parameters to nearly normal levels and improved the histological architecture of the hippocampus and ameliorated memory impairments. In conclusion, the study provides evidence that the treatment with Bacterial protease can improve the memory and learning impairments of LPS-induced AD and may be used as a promising therapeutic agent to manage AD since it has anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Shaimaa M Azzam
- Department of Biochemistry, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Amina A S Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Asmaa Fahmy Street, Heliopolis, Cairo, Egypt
| | - Omar A Ahmed-Farid
- Department of Animal Physiology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Wael Mohamed Abu El-Wafa
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Gad Elsayed Mohamed Salem
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt; Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10700, Thailand.
| |
Collapse
|
8
|
Osbourn M, Rodgers AM, Dubois AV, Small DM, Humphries F, Delagic N, Moynagh PN, Weldon S, Taggart CC, Ingram RJ. Secretory Leucoprotease Inhibitor (SLPI) Promotes Survival during Acute Pseudomonas aeruginosa Infection by Suppression of Inflammation Rather Than Microbial Killing. Biomolecules 2022; 12:biom12121728. [PMID: 36551159 PMCID: PMC9776001 DOI: 10.3390/biom12121728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Secretory leucoprotease inhibitor (SLPI) has multifaceted functions, including inhibition of protease activity, antimicrobial functions, and anti-inflammatory properties. In this study, we show that SLPI plays a role in controlling pulmonary Pseudomonas aeruginosa infection. Mice lacking SLPI were highly susceptible to P. aeruginosa infection, however there was no difference in bacterial burden. Utilising a model of P. aeruginosa LPS-induced lung inflammation, human recombinant SLPI (hrSLPI) administered intraperitoneally suppressed the recruitment of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and resulted in reduced BALF and serum levels of inflammatory cytokines and chemokines. This anti-inflammatory effect of hrSLPI was similarly demonstrated in a systemic inflammation model induced by intraperitoneal injection of LPS from various bacteria or lipoteichoic acid, highlighting the broad anti-inflammatory properties of hrSLPI. Moreover, in bone-marrow-derived macrophages, hrSLPI reduced LPS-induced phosphorylation of p-IkB-α, p-IKK-α/β, p-P38, demonstrating that the anti-inflammatory effect of hrSLPI was due to the inhibition of the NFκB and MAPK pathways. In conclusion, administration of hrSLPI attenuates excessive inflammatory responses and is therefore, a promising strategy to target inflammatory diseases such as acute respiratory distress syndrome or sepsis and could potentially be used to augment antibiotic treatment.
Collapse
Affiliation(s)
- Megan Osbourn
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Aoife M. Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Alice V. Dubois
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Donna M. Small
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Fiachra Humphries
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Nezira Delagic
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Paul N. Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sinéad Weldon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Clifford C. Taggart
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Correspondence: ; Tel.: +4428-9097-2090; Fax: +4428-9097-2671
| |
Collapse
|
9
|
Mongkolpathumrat P, Kijtawornrat A, Suwan E, Unajak S, Panya A, Pusadee T, Kumphune S. Anti-Protease Activity Deficient Secretory Leukocyte Protease Inhibitor (SLPI) Exerts Cardioprotective Effect against Myocardial Ischaemia/Reperfusion. Biomedicines 2022; 10:biomedicines10050988. [PMID: 35625725 PMCID: PMC9138276 DOI: 10.3390/biomedicines10050988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/02/2022] Open
Abstract
Inhibition of proteases shows therapeutic potential. Our previous studies demonstrated the cardioprotection by the Secretory Leukocyte Protease Inhibitor (SLPI) against myocardial ischaemia/reperfusion (I/R) injury. However, it is unclear whether the cardioprotective effect of SLPI seen in our previous works is due to the inhibition of protease enzymes. Several studies demonstrate that the anti-protease independent activity of SLPI could provide therapeutic benefits. Here, we show for the first time that recombinant protein of anti-protease deficient mutant SLPI (L72K, M73G, L74G) (mt-SLPI) could significantly reduce cell death and intracellular reactive oxygen species (ROS) production against an in vitro simulated I/R injury. Furthermore, post-ischaemic treatment of mt-SLPI is found to significantly reduce infarct size and cardiac biomarkers lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) activity, improve cardiac functions, attenuate I/R induced-p38 MAPK phosphorylation, and reduce apoptotic regulatory protein levels, including Bax, cleaved-Caspase-3 and total Capase-8, in rats subjected to an in vivo I/R injury. Additionally, the beneficial effect of mt-SLPI was not significantly different from the wildtype (wt-SLPI). In summary, SLPI could provide cardioprotection without anti-protease activity, which could be more clinically beneficial in terms of providing cardioprotection without interfering with basal serine protease activity.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eukote Suwan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tonapha Pusadee
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-624-693-987
| |
Collapse
|
10
|
Douglas TC, Hannila SS. Working from within: how secretory leukocyte protease inhibitor regulates the expression of pro-inflammatory genes. Biochem Cell Biol 2021; 100:1-8. [PMID: 34555292 DOI: 10.1139/bcb-2021-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is a small but powerful member of the serine protease inhibitor family, which includes proteins such as elafin and α1-antitrypsin. These proteins all have similar structures and antiprotease abilities, but SLPI has been found to have an additional role as an anti-inflammatory factor. It can inhibit the production of pro-inflammatory cytokines in cells stimulated with lipopolysaccharide, prevent neutrophil infiltration in murine models of lung and liver injury, and regulate the activity of the transcription factor NF-κB. In this review, we will revisit SLPI's unique biochemistry, and then explore how its anti-inflammatory functions can be linked to more recent findings showing that SLPI can localize to the nuclei of cells, bind DNA, and act as a regulator of gene expression.
Collapse
Affiliation(s)
- Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
11
|
Overexpression of secretory leukocyte peptidase inhibitor (SLPI) does not modulate experimental osteoarthritis but may be a biomarker for the disease. Osteoarthritis Cartilage 2021; 29:558-567. [PMID: 33485930 DOI: 10.1016/j.joca.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritic cartilage destruction can be regulated by the balance between proteases and anti-proteases. Here, we sought to identify novel cellular protease inhibitors associated with osteoarthritis (OA) pathogenesis. METHODS Candidate molecules were screened from microarray data of chondrocytes treated with OA-associated catabolic factors. The functions of candidate molecules in OA pathogenesis were examined in primary-culture mouse articular chondrocytes and mouse models of OA, such as those stimulated by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenovirus expressing the candidate gene. The value of the selected candidate molecule as a biomarker of OA was examined by measuring its circulating levels in human and mouse blood. RESULTS Bioinformatic analysis identified secretory leukocyte peptidase inhibitor (SLPI) as a highly upregulated cellular protease inhibitor in chondrocytes treated with pathogenic catabolic factors, including interleukin (IL)-1β, hypoxia-inducible factor (HIF)-2α, and zinc importer ZIP8. The adenovirus-mediated overexpression of SLPI in joint tissues did not cause any OA-like change or modulate DMM- or HIF-2α-induced experimental OA in mice. SLPI also did not markedly modulate the expression of OA-associated catabolic or anabolic factors in chondrocytes. However, SLPI was specifically upregulated in OA cartilage, and the serum SLPI levels were significantly elevated in human OA patients and experimental OA mice, suggesting that SLPI may be a biomarker of OA. CONCLUSION Although SLPI is upregulated in OA chondrocytes, it does not appear to per se modulate OA development in mice. However, it may be a potential biomarker of OA in humans and animal models.
Collapse
|
12
|
Nugteren S, Samsom JN. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev 2021; 59:22-35. [PMID: 33602652 DOI: 10.1016/j.cytogfr.2021.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Li AL, Zhu YM, Gao LQ, Wei SY, Wang MT, Ma Q, Zheng YY, Li JH, Wang QF. Exploration of the Immune-Related Signatures and Immune Infiltration Analysis in Melanoma. Anal Cell Pathol (Amst) 2021; 2021:4743971. [PMID: 33511023 PMCID: PMC7826228 DOI: 10.1155/2021/4743971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl, the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk, including cytokine-cytokine receptor interactions, JAK-STAT signaling pathway, chemokine signaling pathway, and Th17 cell differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages (P < 0.01). Furthermore, the association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages (P = 0.023) and activated mast cells (P = 0.005).
Collapse
Affiliation(s)
- Ai-lan Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Yong-mei Zhu
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Lai-qiang Gao
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Shu-yue Wei
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Ming-tao Wang
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qiang Ma
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - You-you Zheng
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Jian-hua Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qing-feng Wang
- College of Integrated Chinese and Western Medicine, Liaoning University of traditional Chinese Medicine, Shenyang 110079, China
| |
Collapse
|
14
|
Wang M, Yang D, Liu Z, Wei S, Wang L, Ai Y, Zhang X, Han H. Identification of genes related to resistance against S. Typhimurium in ovine macrophages. Microb Pathog 2019; 139:103854. [PMID: 31704463 DOI: 10.1016/j.micpath.2019.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Salmonella enteric serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen causing public health hazards. Identification of genes related to macrophages resistance to S. Typhimurium and their immune mechanisms can provide a theoretical basis for disease resistance. In this study, sixty significant differentially expressed genes were screened between susceptible and resistant sheep macrophages by transcriptome RNA-seq. Eight significantly enriched GO terms and six canonical pathways were involved by GO and KEGG enrichment analysis. Furthermore, knockdown of HMOX1 and SLPI increased remarkably the clearance of S. typhimurium, but SPP1 had little effect on the clearance of S. Typhimurium within sheep macrophages. Altogether, these results suggest that many genes of macrophages were reprogrammed via S. Typhimurium infection, some of which may facilitate host defence against Salmonella, while others allow Salmonella to escape.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongbing Yang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhexi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shao Wei
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Science and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
15
|
Vandooren J, Goeminne P, Boon L, Ugarte-Berzal E, Rybakin V, Proost P, Abu El-Asrar AM, Opdenakker G. Neutrophils and Activated Macrophages Control Mucosal Immunity by Proteolytic Cleavage of Antileukoproteinase. Front Immunol 2018; 9:1154. [PMID: 29892293 PMCID: PMC5985294 DOI: 10.3389/fimmu.2018.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Antileukoproteinase or secretory leukocyte peptidase inhibitor is a small protein which protects the mucosal linings against excessive proteolysis, inflammation, and microbial infection. We discovered that gelatinase B or matrix metalloproteinase (MMP)-9, a secreted zinc-dependent endopeptidase typically found at sites of inflammation, destroys antileukoproteinase by cleavages within both of its two functional domains: the anti-microbial N-terminal and the anti-proteolytic C-terminal domains. Cleaved antileukoproteinase possessed a significantly lower ability to bind lipopolysaccharides (LPS) and a reduced capacity to inhibit neutrophil elastase (NE) activity. Whereas intact antileukoproteinase repressed proinflammatory transcript [prostaglandin-endoperoxide synthase 2 (PTGS2) and IL6] synthesis and protein secretion [e.g., of MMP-9] in human CD14+ blood monocytes stimulated with LPS, this effect was reduced or lost for cleaved antileukoproteinase. We demonstrated the in vivo presence of antileukoproteinase cleavage fragments in lower airway secretions of non-cystic fibrosis bronchiectasis patients with considerable levels of neutrophils and, hence, elastase and MMP-9 activity. As a comparison, other MMPs (MMP-2, MMP-7, and MMP-8) and serine proteases (NE, cathepsin G, and proteinase 3) were also able to cleave antileukoproteinase with similar or reduced efficiency. In conclusion, in specific mucosal pathologies, such as bronchiectasis, neutrophils, and macrophage subsets control local immune reactions by proteolytic regulation, here described as the balance between MMPs (in particular MMP-9), serine proteases and local tissue inhibitors.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Pieter Goeminne
- Department of Respiratory Disease, University Hospital of Gasthuisberg, Leuven, Belgium.,Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ahmed M Abu El-Asrar
- Department of Ophthalmology and Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev 2015; 28:79-93. [PMID: 26718149 DOI: 10.1016/j.cytogfr.2015.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
17
|
The Ability of Secretory Leukocyte Protease Inhibitor to Inhibit Apoptosis in Monocytes Is Independent of Its Antiprotease Activity. J Immunol Res 2015; 2015:507315. [PMID: 26247039 PMCID: PMC4515294 DOI: 10.1155/2015/507315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 11/17/2022] Open
Abstract
Secretory Leukocyte Protease Inhibitor (SLPI) is a serine protease inhibitor produced by epithelial and myeloid cells with anti-inflammatory properties. Research has shown that SLPI exerts its anti-inflammatory activity by directly binding to NF-κB DNA binding sites and, in so doing, prevents binding and subsequent transcription of proinflammatory gene expression. In the current study, we demonstrate that SLPI can inhibit TNF-α-induced apoptosis in U937 cells and peripheral blood monocytes. Specifically, SLPI inhibits TNF-α-induced caspase-3 activation and DNA degradation associated with apoptosis. We go on to show that this ability of SLPI to inhibit apoptosis is not dependent on its antiprotease activity as antiprotease deficient variants of SLPI can also inhibit TNF-α-induced apoptosis. This reduction in monocyte apoptosis may preserve monocyte function during inflammation resolution and promote infection clearance at mucosal sites.
Collapse
|
18
|
Aslanidis A, Karlstetter M, Scholz R, Fauser S, Neumann H, Fried C, Pietsch M, Langmann T. Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFκB signaling and induces a neuroprotective phenotype in microglia. J Neuroinflammation 2015; 12:77. [PMID: 25928566 PMCID: PMC4417279 DOI: 10.1186/s12974-015-0296-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/07/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microglia reactivity is a hallmark of neurodegenerative diseases. We have previously identified activated microglia/macrophage whey acidic protein (AMWAP) as a counter-regulator of pro-inflammatory response. Here, we studied its mechanisms of action with a focus on toll-like receptor (TLR) and nuclear factor κB (NFκB) signaling. METHODS Recombinant AMWAP was produced in Escherichia coli and HEK293 EBNA cells and purified by affinity chromatography. AMWAP uptake was identified by fluorescent labeling, and pro-inflammatory microglia markers were measured by qRT-PCR after stimulation with TLR ligands. NFκB pathway proteins were assessed by immunocytochemistry, Western blot, and immunoprecipitation. A 20S proteasome activity assay was used to investigate the anti-peptidase activity of AMWAP. Microglial neurotoxicity was estimated by nitrite measurement and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Microglial proliferation was investigated using flow cytometry, and their phagocytosis was monitored by the uptake of 661W photoreceptor debris. RESULTS AMWAP was secreted from lipopolysaccharide (LPS)-activated microglia and recombinant AMWAP reduced gene transcription of IL6, iNOS, CCL2, CASP11, and TNFα in BV-2 microglia treated with LPS as TLR4 ligand. This effect was replicated with murine embryonic stem cell-derived microglia (ESdM) and primary brain microglia. AMWAP also diminished pro-inflammatory markers in microglia activated with the TLR2 ligand zymosan but had no effects on IL6, iNOS, and CCL2 transcription in cells treated with CpG oligodeoxynucleotides as TLR9 ligand. Microglial uptake of AMWAP effectively inhibited TLR4-dependent NFκB activation by preventing IRAK-1 and IκBα proteolysis. No inhibition of IκBα phosphorylation or ubiquitination and no influence on overall 20S proteasome activity were observed. Functionally, both microglial nitric oxide (NO) secretion and 661W photoreceptor apoptosis were significantly reduced after AMWAP treatment. AMWAP promoted the filopodia formation of microglia and increased the phagocytic uptake of apoptotic 661W photoreceptor cells. CONCLUSIONS AMWAP is secreted from reactive microglia and acts in a paracrine fashion to counter-balance TLR2/TLR4-induced reactivity through NFκB inhibition. AMWAP also induces a neuroprotective microglial phenotype with reduced neurotoxicity and increased phagocytosis. We therefore hypothesize that anti-inflammatory whey acidic proteins could have a therapeutic potential in neurodegenerative diseases of the brain and the retina.
Collapse
Affiliation(s)
- Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Sascha Fauser
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Straße 25, D-53127, Bonn, Germany.
| | - Cora Fried
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, D-50931, Cologne, Germany.
| | - Markus Pietsch
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, D-50931, Cologne, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, D-50931, Cologne, Germany.
| |
Collapse
|
19
|
Secretory leukocyte protease inhibitor is a proliferation and survival factor for pancreatic cancer cells. Clin Transl Oncol 2014; 17:314-21. [PMID: 25319722 DOI: 10.1007/s12094-014-1232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/20/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES A variety of inflammatory cytokines have been demonstrated to participate in tumorigenesis and progression. Secretory leukocyte protease inhibitor (SLPI) has been demonstrated to show a broad-spectrum of anti-inflammatory effects. This study investigates the expression of SLPI in human pancreatic cancer tissues and cells as well as its biological effects in human pancreatic cancer cells. METHODS Reverse transcription-polymerase chain reaction, immunohistochemistry, and Western blot were used to detect SLPI mRNA and protein levels in human pancreatic cancer tissues, adjacent tissues, and pancreatic cancer Bxpc-3 and Panc-1 cells. Knockout of SLPI expression was established by recombinant viral vector expressing short hairpin RNA (shRNA) targeting SLPI. Cell viability was analyzed by MTT assay. Cell apoptosis was detected by Hochest33258 staining and flow cytometry assay. RESULTS Higher SLPI expression was observed in pancreatic tissues, Bxpc-3 cells, and Panc-1 cells compared to the peritumoral tissues (p < 0.01). SLPI expression in Bxpc-3 and Panc-1 cells was effectively silenced by shRNA (p < 0.001). Silencing of SLPI expression significantly reduced cell viability, inhibited cell proliferation, and induced cell apoptosis (p < 0.001). CONCLUSIONS Abnormal over-expression of SLPI in pancreatic cancer cells may be associated with the development of disease through its roles in promoting cancer cell survival and proliferation as well as anti-apoptosis. SLPI can be used as a target for developing targeted therapy of pancreatic cancer.
Collapse
|
20
|
Abstract
Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF) are all pulmonary diseases which are characterized by chronic inflammation and an increase in mucus production. Excess mucus in the airways correlates with pathophysiology such as a decline in lung function and prolonged bacterial infections. New drugs to treat these chronic respiratory diseases are currently being developed and include both inhaled and orally administered compounds. Whilst oral drugs may be easier to administer, they are more prone to side-effects due to higher bioavailability. Inhaled compounds may show reduced bioavailability, but face their own unique challenges. For example, thick mucus in the respiratory tracts of asthma, CF and COPD patients can act as a physical barrier that impedes drug delivery. Mucus also contains a high number of enzymes and proteases that may degrade compounds before they reach their site of action. Furthermore, some classes of drugs are rapidly absorbed across the respiratory epithelia into systemic circulation, which may limit their duration of action and/or cause off-target effects. This review discusses some of the different treatment options that are currently available and the considerations that need to be taken into account to produce new therapies for the treatment of chronic respiratory diseases.
Collapse
Affiliation(s)
- Jean Tyrrell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, North Carolina, USA
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, North Carolina, USA ; Department of Cell Biology and Physiology, University of North Carolina, North Carolina, USA
| |
Collapse
|
21
|
A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation. Blood 2013; 123:1239-49. [PMID: 24352879 DOI: 10.1182/blood-2013-06-508887] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified diminished levels of the natural inhibitor of neutrophil elastase (NE), secretory leukocyte protease inhibitor (SLPI), in myeloid cells and plasma of patients with severe congenital neutropenia (CN). We further found that downregulation of SLPI in CD34(+) bone marrow (BM) hematopoietic progenitors from healthy individuals resulted in markedly reduced in vitro myeloid differentiation accompanied by cell-cycle arrest and elevated apoptosis. Reciprocal regulation of SLPI by NE is well documented, and we previously demonstrated diminished NE levels in CN patients. Here, we found that transduction of myeloid cells with wild-type NE or treatment with exogenous NE increased SLPI messenger RNA and protein levels, whereas transduction of mutant forms of NE or inhibition of NE resulted in downregulation of SLPI. An analysis of the mechanisms underlying the diminished myeloid differentiation caused by reduced SLPI levels revealed that downregulation of SLPI with short hairpin RNA (shRNA) upregulated nuclear factor κB levels and reduced phospho-extracellular signal-regulated kinase (ERK1/2)-mediated phosphorylation and activation of the transcription factor lymphoid enhancer-binding factor-1 (LEF-1). Notably, microarray analyses revealed severe defects in signaling cascades regulating the cell cycle, including c-Myc-downstream signaling, in myeloid cells transduced with SLPI shRNA. Taken together, these results indicate that SLPI controls the proliferation, differentiation, and cell cycle of myeloid cells.
Collapse
|
22
|
HE4 (WFDC2) Promotes Tumor Growth in Endometrial Cancer Cell Lines. Int J Mol Sci 2013; 14:6026-43. [PMID: 23502467 PMCID: PMC3634435 DOI: 10.3390/ijms14036026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/07/2013] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
HE4, also known as WFDC2, is a useful biomarker for ovarian cancer when either used alone or in combination with CA125. HE4 is also overexpressed in endometrial cancer (EC), but its function in cancer cells is not clear. In this study, we investigate the role of HE4 in EC progression. An HE4-overexpression system was established by cloning the HE4 prototypic mRNA variant (HE4-V0) into a eukaryotic expression vector. Following transfection, stable clones in two EC cell lines were selected. The effects of HE4 overexpression on cell growth and function were measured with the use of cell proliferation assay, matrigel invasion, and soft agar gel colony formation assays. HE4-induced cancer cell proliferation in vivo was examined in a mouse xenograft model. HE4 overexpression significantly enhanced EC cell proliferation, matrigel invasion, and colony formation in soft agar. Moreover, HE4 overexpression promoted tumor growth in the mouse xenograft model. HE4 overexpression enhanced several malignant phenotypes in cell culture and in a mouse model. These results are consistent with our previous observation that high levels of serum HE4 closely correlate with the stage, myometrial invasion and tumor size in patients with EC. This study provides evidence that HE4 overexpression directly impacts tumor progression in endometrial cancer.
Collapse
|
23
|
Leonor Sánchez M, María Belén Martínez M, César Maffia P. Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.24023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
|
25
|
Abstract
WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity.
Collapse
|
26
|
Alberts R, Chen H, Pommerenke C, Smit AB, Spijker S, Williams RW, Geffers R, Bruder D, Schughart K. Expression QTL mapping in regulatory and helper T cells from the BXD family of strains reveals novel cell-specific genes, gene-gene interactions and candidate genes for auto-immune disease. BMC Genomics 2011; 12:610. [PMID: 22182475 PMCID: PMC3277499 DOI: 10.1186/1471-2164-12-610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play an essential role in the control of the immune response. Treg cells represent important targets for therapeutic interventions of the immune system. Therefore, it will be very important to understand in more detail which genes are specifically activated in Treg cells versus T helper (Th) cells, and which gene regulatory circuits may be involved in specifying and maintaining Treg cell homeostasis. RESULTS We isolated Treg and Th cells from a genetically diverse family of 31 BXD type recombinant inbred strains and the fully inbred parental strains of this family--C57BL/6J and DBA/2J. Subsequently genome-wide gene expression studies were performed from the isolated Treg and Th cells. A comparative analysis of the transcriptomes of these cell populations allowed us to identify many novel differentially expressed genes. Analysis of cis- and trans-expression Quantitative Trait Loci (eQTLs) highlighted common and unique regulatory mechanisms that are active in the two cell types. Trans-eQTL regions were found for the Treg functional genes Nrp1, Stat3 and Ikzf4. Analyses of the respective QTL intervals suggested several candidate genes that may be involved in regulating these genes in Treg cells. Similarly, possible candidate genes were found which may regulate the expression of F2rl1, Ctla4, Klrb1f. In addition, we identified a focused group of candidate genes that may be important for the maintenance of self-tolerance and the prevention of allergy. CONCLUSIONS Variation of expression across the strains allowed us to find many novel gene-interaction networks in both T cell subsets. In addition, these two data sets enabled us to identify many differentially expressed genes and to nominate candidate genes that may have important functions for the maintenance of self-tolerance and the prevention of allergy.
Collapse
Affiliation(s)
- Rudi Alberts
- Department of Infection Genetics, University of Veterinary Medicine Hannover, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Greene CM, Hassan T, Molloy K, McElvaney NG. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Rev Respir Med 2011; 5:395-411. [PMID: 21702661 DOI: 10.1586/ers.11.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine proteinase inhibitor α-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
28
|
Kalogera E, Scholler N, Powless C, Weaver A, Drapkin R, Li J, Jiang SW, Podratz K, Urban N, Dowdy SC. Correlation of serum HE4 with tumor size and myometrial invasion in endometrial cancer. Gynecol Oncol 2011; 124:270-5. [PMID: 22037318 DOI: 10.1016/j.ygyno.2011.10.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the utility of serum (HE4) as a marker for high risk disease in patients with endometrial cancer (EC). METHODS Preoperative serum HE4 levels were measured from a cohort of 75 patients surgically treated for EC. Cases were compared to matched controls without a history of cancer. HE4 levels were analyzed as a function of primary tumor diameter, grade, stage and histological subtype. Wilcoxon rank-sum test, ROC curve, Spearman rank correlation coefficient and contingency tables were used for statistical analyses. RESULTS Stage distribution was as follows: 49 stage I, 2 stage II, 20 stage III, 4 stage IV. Type I EC was present in 54 patients, type II in 21. Median HE4 was significantly elevated in both types I and II EC compared to controls (P<0.001 and P=0.019, respectively). There was significant correlation between type I EC, median HE4, deep myometrial invasion (MI) (>50%, P<0.001) and primary tumor diameter (PTD) (>2 cm, P=0.002). Low risk patients (type I, MI ≤ 50% and PTD ≤ 2 cm) had significantly lower median HE4 compared to all other type I EC patients (P<0.01). In comparison to prior investigations, HE4 (cutoff of 8 mfi) was more sensitive than CA125 in detecting advanced stage disease. CONCLUSION Our data suggest that HE4 is elevated in a high proportion of EC patients, is correlated with PTD and MI, and is more sensitive than CA125 in EC. These observations suggest potential utility of HE4 in the preoperative prediction of high risk disease and the necessity for definitive surgical staging.
Collapse
|
29
|
Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig Dis Sci 2011; 56:2818-32. [PMID: 21479819 DOI: 10.1007/s10620-011-1692-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/23/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoadiponectinemia has been associated with states of chronic inflammation in humans. Mesenteric fat hypertrophy and low adiponectin have been described in patients with Crohn's disease. We investigated whether adiponectin and the plant-derived homolog, osmotin, are beneficial in a murine model of colitis. METHODS C57BL/6 mice were injected (i.v.) with an adenoviral construct encoding the full-length murine adiponectin gene (AN+DSS) or a reporter-LacZ (Ctr and V+DSS groups) prior to DSS colitis protocol. In another experiment, mice with DSS colitis received either osmotin (Osm+DSS) or saline (DSS) via osmotic pumps. Disease progression and severity were evaluated using body weight, stool consistency, rectal bleeding, colon lengths, and histology. In vitro experiments were carried out in bone marrow-derived dendritic cells. RESULTS Mice overexpressing adiponectin had lower expression of proinflammatory cytokines (TNF, IL-1β), adipokines (angiotensin, osteopontin), and cellular stress and apoptosis markers. These mice had higher levels of IL-10, alternative macrophage marker, arginase 1, and leukoprotease inhibitor. The plant adiponectin homolog osmotin similarly improved colitis outcome and induced robust IL-10 secretion. LPS induced a state of adiponectin resistance in dendritic cells that was reversed by treatment with PPARγ agonist and retinoic acid. CONCLUSION Adiponectin exerted protective effects during murine DSS colitis. It had a broad activity that encompassed cytokines, chemotactic factors as well as processes that assure cell viability during stressful conditions. Reducing adiponectin resistance or using plant-derived adiponectin homologs may become therapeutic options in inflammatory bowel disease.
Collapse
|
30
|
Gibbons A, Padilla-Carlin D, Kelly C, Hickey AJ, Taggart C, McElvaney NG, Cryan SA. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model. Pharm Res 2011; 28:2233-45. [PMID: 21647791 DOI: 10.1007/s11095-011-0454-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo. METHODS Transport of DOPS-rSLPI and free-rSLPI across a polarised air-liquid epithelial monolayer was measured. An asthma guinea pig model was administered either DOPS-rSLPI liposomes or free-rSLPI by intratracheal instillation. RESULTS Apparent permeability (P(app)) of free-rSLPI was significantly higher at 4.9 x 10⁻⁶ cm/s than for DOPS-rSLPI, P(app) of 2.05 x 10⁻⁷ cm/s, confirmed by in vivo studies. Plasma rSLPI concentrations were highest in free-rSLPI-treated animals compared with those treated with DOPS-rSLPI; there also appeared to be a trend for higher intracellular rSLPI content in animals dosed with DOPS-rSLPI compared to free-rSLPI. Eosinophil influx was recorded as a measure of inflammation. Pre-dosing with either free-rSLPI or DOPS-rSLPI prevented inflammatory response to antigen challenge to levels comparable to control animals. CONCLUSION Encapsulation of rSLPI in DOPS:Chol liposomes improves stability, reduces clearance and increases residence time in the lungs after local delivery.
Collapse
Affiliation(s)
- Aileen Gibbons
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
31
|
Karlstetter M, Walczak Y, Weigelt K, Ebert S, Van den Brulle J, Schwer H, Fuchshofer R, Langmann T. The novel activated microglia/macrophage WAP domain protein, AMWAP, acts as a counter-regulator of proinflammatory response. THE JOURNAL OF IMMUNOLOGY 2010; 185:3379-90. [PMID: 20709948 DOI: 10.4049/jimmunol.0903300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microgliosis is a common phenomenon in neurodegenerative disorders, including retinal dystrophies. To identify candidate genes involved in microglial activation, we used DNA-microarray analysis of retinal microglia from wild-type and retinoschisin-deficient (Rs1h(-/Y)) mice, a prototypic model for inherited retinal degeneration. Thereby, we cloned a novel 76 aa protein encoding a microglia/macrophage-restricted whey acidic protein (WAP) termed activated microglia/macrophage WAP domain protein (AMWAP). The gene consists of three exons and is located on mouse chromosome 11 in proximity to a chemokine gene cluster. mRNA expression of AMWAP was detected in microglia from Rs1h(-/Y) retinas, brain microglia, and other tissue macrophages. AMWAP transcription was rapidly induced in BV-2 microglia upon stimulation with multiple TLR ligands and IFN-gamma. The TLR-dependent expression of AMWAP was dependent on NF-kappaB, whereas its microglia/macrophage-specific transcription was regulated by PU.1. Functional characterization showed that AMWAP overexpression reduced the proinflammatory cytokines IL-6 and IL-1beta and concomitantly increased expression of the alternative activation markers arginase 1 and Cd206. Conversely, small interfering RNA knockdown of AMWAP lead to higher IL-6, IL-1beta, and Ccl2 transcript levels, whereas diminishing arginase 1 and Cd206 expression. Moreover, AMWAP expressing cells had less migratory capacity and showed increased adhesion in a trypsin-protection assay indicating antiserine protease activity. In agreement with findings from other WAP proteins, micromolar concentrations of recombinant AMWAP exhibited significant growth inhibitory activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Taken together, we propose that AMWAP is a counter-regulator of proinflammatory microglia/macrophage activation and a potential modulator of innate immunity in neurodegeneration.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Institute of Human Genetics, University of Regensburg, Regensburg, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghasemlou N, Bouhy D, Yang J, López-Vales R, Haber M, Thuraisingam T, He G, Radzioch D, Ding A, David S. Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. ACTA ACUST UNITED AC 2010; 133:126-38. [PMID: 20047904 DOI: 10.1093/brain/awp304] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-kappaB and expression of tumour necrosis factor-alpha. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.
Collapse
Affiliation(s)
- Nader Ghasemlou
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Weldon S, McNally P, McElvaney NG, Elborn JS, McAuley DF, Wartelle J, Belaaouaj A, Levine RL, Taggart CC. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:8148-56. [PMID: 20007580 PMCID: PMC3404409 DOI: 10.4049/jimmunol.0901716] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.
Collapse
Affiliation(s)
- Sinéad Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Paul McNally
- Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G. McElvaney
- Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - J. Stuart Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Danny F. McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Julien Wartelle
- Institut National de la Santé et de la Recherche Médicale, Programme Avenir/EA Inflammation and Immunity of the Respiratory Epithelium, URCA, IFR53, Reims, France
| | - Abderrazzaq Belaaouaj
- Institut National de la Santé et de la Recherche Médicale, Programme Avenir/EA Inflammation and Immunity of the Respiratory Epithelium, URCA, IFR53, Reims, France
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Clifford C. Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
34
|
Gibbons AM, McElvaney NG, Taggart CC, Cryan SA. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 2009; 26:513-22. [DOI: 10.1080/02652040802466535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Du D, Shi YH, Le GW. Microarray analysis of high-glucose diet-induced changes in mRNA expression in jejunums of C57BL/6J mice reveals impairment in digestion, absorption. Mol Biol Rep 2009; 37:1867-74. [PMID: 19618290 DOI: 10.1007/s11033-009-9622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Long term intake of high-glucose diet (HGD) may induce many diseases such as dyslipidemia, fatty liver and diabetes disease. Most of the research for molecular mechanisms of the association between HGD and the above diseases focus on the metabolism of glucose and lipid. However, there are few studies on molecular mechanism of the effect of HGD on digestion and absorption. We used HGD (containing 20% glucose) to feed C57BL/6J mice for 4 weeks, detected the expressions of 13,098 genes in jejunums of C57BL/6J mice with DNA microarray. Microarray analysis showed the expression of genes related to digestive enzyme, gastrointestinal peptide and nutrient transporters were significantly changed, which indicated that HGD induced the suppression of digestive enzyme gene expression, attenuation of alimentary tract movement and nutrient transportation. In one word, the microarray analysis suggested that HGD impaired the function of digestion and absorption in jejunum of C57BL/6J mice. We validated our microarray findings by conducting real-time RT-PCR assays on selected genes and detecting the activities of disaccharidases such as lactase, maltase and sucrase in jejunum of C57BL/6J mice.
Collapse
Affiliation(s)
- Dan Du
- State Key Lab of Food Science and Technology, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, Jiangsu Province, China
| | | | | |
Collapse
|
36
|
Weppler A, Issekutz AC. ALVEOLAR EPITHELIUM DOWN-MODULATES ENDOTOXIN—BUT NOT TUMOR NECROSIS FACTOR ALPHA—INDUCED ACTIVATION OF ENDOTHELIUM AND SELECTIVELY INHIBITS NEUTROPHIL TRANSENDOTHELIAL MIGRATION. Exp Lung Res 2009; 34:425-53. [DOI: 10.1080/01902140802130105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Gastroesophageal reflux disease does not lead to changes in the secretory leukocyte protease inhibitor expression in esophageal mucosa. Eur J Gastroenterol Hepatol 2009; 21:150-8. [PMID: 19212204 DOI: 10.1097/meg.0b013e32830e4905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Secretory leukocyte protease inhibitor (SLPI) serves as a 'defense shield' against serine proteases in inflammation. Gastroesophageal reflux disease (GERD) is associated with chronic inflammation and histomorphological alterations of the gastroesophageal junction and esophageal mucosa. Here, it was investigated whether the presence of GERD was associated with changes of mucosal SLPI expression. METHODS Ninety-five patients with GERD-related symptoms and 27 patients lacking those symptoms were included. Endoscopic and histological evaluation was done according to the Los Angeles and updated Sydney classifications. Multiple biopsies were taken from gastric and esophageal mucosa of each patient for histology, immunohistochemistry (IHC), and molecular analyses. SLPI expression was analyzed by quantitative reverse transcriptase-PCR, enzyme-linked immunoassay, and IHC, and the data were statistically analyzed with respect to endoscopic and clinical parameters. RESULTS Forty-four patients had nonerosive and 51 erosive reflux diseases, respectively. Histology revealed higher chronic inflammation (P=0.04) and significant alterations of the intercellular spaces, basal cell hyperplasia, and length of papilla (P<0.05) in patients with GERD. Mucosal SLPI levels were comparable among antrum, cardia, and esophagus ranging from 95 to 165 pg/mug protein and were not affected by the presence of GERD, whereas esophageal SLPI-transcript levels were three-fold induced in patients with GERD (P=0.002). IHC identified epithelial cells as major cellular source of mucosal SLPI expression in normal cardiac and esophageal mucosa, whereas infiltrating immune cells contributed to the SLPI expression in chronically inflamed tissue. CONCLUSION GERD, a chemically induced inflammation, does not affect mucosal SLPI expression in gastroesophageal mucosa.
Collapse
|
38
|
Chiou MJ, Chen LK, Peng KC, Pan CY, Lin TL, Chen JY. Stable expression in a Chinese hamster ovary (CHO) cell line of bioactive recombinant chelonianin, which plays an important role in protecting fish against pathogenic infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:117-126. [PMID: 18765249 DOI: 10.1016/j.dci.2008.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/17/2008] [Accepted: 07/21/2008] [Indexed: 05/26/2023]
Abstract
Chelonianin, originally isolated from the shrimp (Penaeus monodon), exhibits antimicrobial effects in vitro and in vivo and is used to treat infectious fish diseases. Herein, we report that the recombinant chelonianin protein fused to a fluorescent protein (rcf protein) was expressed from a stably transfected Chinese hamster ovary (CHO) cells. The in vitro experiments showed that the rcf protein exhibited antimicrobial activity against several bacteria, while the recombinant fluorescent protein alone did not. In addition, pretreatment and post-treatment with the rcf protein were both effective in promoting a significant decrease in fish mortality and decreasing the number of infectious bacteria. We utilized the quantitative reverse-transcriptase polymerase chain reaction technique to survey the levels of gene expressions of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide synthase 1 induced in response to bacterial infection in experiments with tilapia (Oreochromis mossambicus). Our results indicated that the rescue of fish treated with the rcf protein may involve regulation of TNF-alpha expression. Collectively, chelonianin inhibited the production of an inflammatory mediator and reduced mortality in fish during bacterial challenge, suggesting that it has potential as a therapeutic or prophylactic drug for use against bacterial infectious diseases.
Collapse
Affiliation(s)
- Ming-Jyun Chiou
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Wheelhouse N, Wattegedera S, Fleming D, Fitch P, Kelly R, Entrican G. Chlamydia trachomatis and Chlamydophila abortus induce the expression of secretory leukocyte protease inhibitor in cells of the human female reproductive tract. Microbiol Immunol 2008; 52:465-8. [PMID: 19039956 DOI: 10.1111/j.1348-0421.2008.00058.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
C. trachomatis and C. abortus are related Gram-negative intracellular bacteria that cause reproductive failure due to infertility (C. trachomatis) or abortion (C. abortus). These organisms target epithelial cells in the reproductive tract and/or placenta, but the innate immune mechanisms that lead to protection or pathology and disease are poorly understood. SLPI is an innate immune molecule which protects mucosal surfaces from infection and injury. C. trachomatis and C. abortus were found to induce SLPI mRNA and peptide expression in HeLa (cervical epithelium) and JEG-3 cells (trophoblast) respectively. Both cell lines constitutively expressed SLPI and, although infection enhanced this expression, killed organisms did not. These data demonstrate that Chlamydia/Chlamydophila grow in cells that express SLPI, suggesting that SLPI does not exert antimicrobial effects against these organisms. However, SLPI has multiple functions, and we speculate that it may play a role in controlling tissue inflammation and pathology.
Collapse
Affiliation(s)
- Nick Wheelhouse
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Weldon S, McGarry N, Taggart CC, McElvaney NG. The role of secretory leucoprotease inhibitor in the resolution of inflammatory responses. Biochem Soc Trans 2007; 35:273-6. [PMID: 17371258 DOI: 10.1042/bst0350273] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic lung disease is one of the most common causes of death and disability worldwide. This group of diseases is characterized by a protease burden, an infective process and a dominant pro-inflammatory profile. While SLPI (secretory leucoprotease inhibitor) was initially identified as a serine protease inhibitor, it has since been shown that SLPI possesses other properties distinct from those associated with its antiprotease capabilities that play an important role in protecting the host from infection and injury. In the course of this review, we will highlight the findings from a range of studies that illustrate the multiple functions of SLPI and its role in the resolution of the immune response.
Collapse
Affiliation(s)
- S Weldon
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | |
Collapse
|
41
|
Wex T, Treiber G, Venerito M, Leodolter A, Peitz U, Kuester D, Hritz I, Krueger S, Roessner A, Malfertheiner P. Helicobacter pylori-induced downregulation of the secretory leukocyte protease inhibitor (SLPI) in gastric epithelial cell lines and its functional relevance for H. pylori-mediated diseases. Biol Chem 2006; 387:893-901. [PMID: 16913839 DOI: 10.1515/bc.2006.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI) exerts antiproteolytic activity towards serine proteases, as well as anti-microbial and anti-inflammatory effects. To investigate its role in H. pylori-mediated diseases, SLPI expression was analyzed by RT-PCR, ELISA and immunohistochemistry in clinical samples and gastric tumor cell lines. Determination of the mucosal SLPI levels in 126 patients confirmed the previously reported downregulation of SLPI in H. pylori-infected patients. The lower SLPI levels in antral biopsies of H. pylori-positive subjects were associated with a 30-fold increase (p<0.01) in neutrophil elastase activity, and a significant negative correlation was demonstrated for both parameters (R=-0.63, p=0.0002). Eradication of the bacterium in a long-term study (5-7 years) led to a recovery of mucosal SLPI expression. In vitro experiments using four gastric tumor cell lines (AGS, MKN-28, MKN-45, NCI-N87) generally confirmed the clinical findings. While the co-incubation of these cell lines with H. pylori resulted in lower or unchanged SLPI protein levels, the corresponding SLPI mRNA amounts were upregulated by up to five-fold (p=0.006) in all cell lines. Taken together, these results indicate that the reduction in antral SLPI levels in H. pylori-infected subjects has a functional relevance for gastric mucosa and the H. pylori-induced decrease in SLPI is primarily regulated at the posttranslational level.
Collapse
Affiliation(s)
- Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bouchard D, Morisset D, Bourbonnais Y, Tremblay GM. Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol 2006; 7:167-74. [PMID: 16455481 DOI: 10.1016/s1470-2045(06)70579-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of early diagnosis to reduce the morbidity and mortality from cancer has led to a search for new sensitive and specific tumour markers. Molecular techniques developed over the past few years allow simultaneous screening of thousands of genes, and have been applied to different cancers to identify many genes that are modulated in various cancers. Of these, attention has focused on genes coding for a family of proteins with whey-acidic-protein (WAP) motifs. Most notably, the genes coding for elafin, antileukoproteinase 1 (previously called secretory leucocyte proteinase inhibitor, SLPI), WAP four disulphide core domain protein 1 (previously called prostate stromal protein 20 kDa, PS20), and WAP four disulphide core domain protein 2 (previously called major human epididymis-specific protein E4, HE4), have been identified as candidate molecular markers for several cancers. In this review, we assess data for an association between cancer and human WAP proteins, and discuss their potential role in tumour progression. We also propose a new mechanism by which WAP proteins might have a role in carcinogenesis.
Collapse
Affiliation(s)
- Dominique Bouchard
- Laval Hospital, Laval University Institute of Pneumology and Cardiology, Quebec, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response.
Collapse
|