1
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
2
|
Kuchitsu Y, Taguchi T. Lysosomal microautophagy: an emerging dimension in mammalian autophagy. Trends Cell Biol 2024; 34:606-616. [PMID: 38104013 DOI: 10.1016/j.tcb.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Autophagy is a self-catabolic process through which cellular components are delivered to lysosomes for degradation. There are three types of autophagy, i.e., macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. In macroautophagy, a portion of the cytoplasm is wrapped by the autophagosome, which then fuses with lysosomes and delivers the engulfed cytoplasm for degradation. In CMA, the translocation of cytosolic substrates to the lysosomal lumen is directly across the limiting membrane of lysosomes. In microautophagy, lytic organelles, including endosomes or lysosomes, take up a portion of the cytoplasm directly. Although macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become evident that microautophagy plays a variety of cellular roles from yeast to mammals. Here we review the very recent updates of microautophagy. In particular, we focus on the feature of the degradative substrates and the molecular machinery that mediates microautophagy.
Collapse
Affiliation(s)
- Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Manandhar L, Dutta RK, Devkota P, Chhetri A, Wei X, Park C, Kwon HM, Park R. TFEB activation triggers pexophagy for functional adaptation during oxidative stress under calcium deficient-conditions. Cell Commun Signal 2024; 22:142. [PMID: 38383392 PMCID: PMC10880274 DOI: 10.1186/s12964-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Calcium is a ubiquitous intracellular messenger that regulates the expression of various genes involved in cell proliferation, differentiation, and motility. The involvement of calcium in diverse metabolic pathways has been suggested. However, the effect of calcium in peroxisomes, which are involved in fatty acid oxidation and scavenges the result reactive oxygen species (ROS), remains elusive. In addition, impaired peroxisomal ROS inhibit the mammalian target of rapamycin complex 1 (mTORC1) and promote autophagy. Under stress, autophagy serves as a protective mechanism to avoid cell death. In response to oxidative stress, lysosomal calcium mediates transcription factor EB (TFEB) activation. However, the impact of calcium on peroxisome function and the mechanisms governing cellular homeostasis to prevent diseases caused by calcium deficiency are currently unknown. METHODS To investigate the significance of calcium in peroxisomes and their roles in preserving cellular homeostasis, we established an in-vitro scenario of calcium depletion. RESULTS This study demonstrated that calcium deficiency reduces catalase activity, resulting in increased ROS accumulation in peroxisomes. This, in turn, inhibits mTORC1 and induces pexophagy through TFEB activation. However, treatment with the antioxidant N-acetyl-l-cysteine (NAC) and the autophagy inhibitor chloroquine impeded the nuclear translocation of TFEB and attenuated peroxisome degradation. CONCLUSIONS Collectively, our study revealed that ROS-mediated TFEB activation triggers pexophagy during calcium deficiency, primarily because of attenuated catalase activity. We posit that calcium plays a significant role in the proper functioning of peroxisomes, critical for fatty-acid oxidation and ROS scavenging in maintaining cellular homeostasis. These findings have important implications for signaling mechanisms in various pathologies, including Zellweger's syndrome and ageing.
Collapse
Affiliation(s)
- Laxman Manandhar
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Raghbendra Kumar Dutta
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Present address: Department of Chemistry (Biochemistry Division) Crosley Tower, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Pradeep Devkota
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Arun Chhetri
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Xiaofan Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Golchin A, Maleki M, Alemi F, Malakoti F, Yousefi B. Autophagy-targeted nanoparticles in breast carcinoma: A systematic review. Cell Biol Int 2023; 47:1767-1781. [PMID: 37671447 DOI: 10.1002/cbin.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
Breast cancer is a commonly known cancer type and the leading cause of cancer death among females. One of the unresolved problems in cancer treatment is the increased resistance of the tumor to existing treatments, which is a direct result of apoptotic defects. Calculating an alternative to cell death (autophagy) may be the ultimate solution to maximizing cancer cell death. Our aim in this study was to investigate the potential of free nanoparticles (un-drug-loaded) in the induction or inhibition of autophagy and consider this effect on the therapy process. When the studies met the inclusion criteria, the full texts of all relevant articles were carefully examined and classified. Of the 25 articles included in the analysis, carried out on MCF-7, MDA-MB-231, MDA-MB-231-TXSA, MDA-MB-468, SUM1315, and 4T1 cell lines. Twenty in vitro studies and five in vivo/in vitro studies applied five different autophagy tests: Acridine orange, western blot, Cyto-ID Autophagy Detection Kit, confocal microscope, and quantitative polymerase chain reaction. Nanoparticles (NPs) in the basic format, including Ag, Au, Y2 O3 , Se, ZnO, CuO, Al, Fe, vanadium pentoxide, and liposomes, were prepared in the included articles. Three behaviors of NPs related to autophagy were seen: induction, inhibition, and no action. Screened and presented data suggest that most of the involved free NPs (metallic NPs) in this systematic review had reactive oxygen species-mediated pathways with autophagy induction (36%). Also, PI3K/Akt/mTOR and MAPK/ERK signaling pathways were mentioned in just four studies (16%). An impressive percentage of studies (31%) did not examine the NP-related autophagy pathway.
Collapse
Affiliation(s)
- Asal Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Yanagisawa M, Chuong SDX. Chloroplast Envelopes Play a Role in the Formation of Autophagy-Related Structures in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:443. [PMID: 36771525 PMCID: PMC9920391 DOI: 10.3390/plants12030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Autophagy is a degradation process of cytoplasmic components that is conserved in eukaryotes. One of the hallmark features of autophagy is the formation of double-membrane structures known as autophagosomes, which enclose cytoplasmic content destined for degradation. Although the membrane source for the formation of autophagosomes remains to be determined, recent studies indicate the involvement of various organelles in autophagosome biogenesis. In this study, we examined the autophagy process in Bienertia sinuspersici: one of four terrestrial plants capable of performing C4 photosynthesis in a single cell (single-cell C4 species). We demonstrated that narrow tubules (stromule-like structures) 30-50 nm in diameter appear to extend from chloroplasts to form the membrane-bound structures (autophagosomes or autophagy-related structures) in chlorenchyma cells of B. sinuspersici during senescence and under oxidative stress. Immunoelectron microscopic analysis revealed the localization of stromal proteins to the stromule-like structures, sequestering portions of the cytoplasm in chlorenchyma cells of oxidative stress-treated leaves of B. sinuspersici and Arabidopsis thaliana. Moreover, the fluorescent marker for autophagosomes GFP-ATG8, colocalized with the autophagic vacuole maker neutral red in punctate structures in close proximity to the chloroplasts of cells under oxidative stress conditions. Together our results implicate a role for chloroplast envelopes in the autophagy process induced during senescence or under certain stress conditions in plants.
Collapse
|
7
|
Wu P, Choo CYL, Lu H, Wei X, Chen Y, Yago JI, Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2022; 23:1538-1554. [PMID: 35810316 PMCID: PMC9452759 DOI: 10.1111/mpp.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/09/2023]
Abstract
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H2 O2 ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H2 O2 triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H2 O2 and smaller necrotic lesions on citrus leaves. In addition to H2 O2 , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
Collapse
Affiliation(s)
- Pei‐Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Xian‐Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Yu‐Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Jonar I. Yago
- Plant Science Department, College of AgricultureNueva Vizcaya State UniversityBayombongPhilippines
| | - Kuang‐Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
8
|
Hou R, Gao L, Liu J, Liang Z, Zhou YJ, Zhang L, zhang Y. Comparative proteomics analysis of Pichia pastoris cultivating in glucose and methanol. Synth Syst Biotechnol 2022; 7:862-868. [PMID: 35572767 PMCID: PMC9077519 DOI: 10.1016/j.synbio.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii) has been extensively engineered for protein production, and is attracting attention as a chassis cell for methanol biotransformation toward production of small molecules. However, the relatively unclear methanol metabolism hampers the metabolic rewiring to improve the biosynthetic efficiency. We here performed a label-free quantitative proteomic analysis of Pichia pastoris when cultivated in minimal media containing methanol and glucose, respectively. There were 243, 158 up-regulated proteins and 244, 304 down-regulated proteins in log and stationary phase, respectively, when cultivated in methanol medium compared with that of glucose medium. Peroxisome enrichment further improved the characterization of more differentially expressed proteins (481 proteins in log phase and 524 proteins in stationary phase). We demonstrated the transaldolase isoenzyme (Tal2, Protein ID: C4R244) was highly up-regulated in methanol medium cultivation, which plays an important role in methanol utilization. Our work provides important information for understanding methanol metabolism in methyltrophic yeast and will help to engineer methanol biotransformation in P. pastoris.
Collapse
Affiliation(s)
- Rui Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linhui Gao
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yongjin J. Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yukui zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
9
|
Wu PC, Chen YK, Yago JI, Chung KR. Peroxisomes Implicated in the Biosynthesis of Siderophores and Biotin, Cell Wall Integrity, Autophagy, and Response to Hydrogen Peroxide in the Citrus Pathogenic Fungus Alternaria alternata. Front Microbiol 2021; 12:645792. [PMID: 34262533 PMCID: PMC8273606 DOI: 10.3389/fmicb.2021.645792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Little is known about the roles of peroxisomes in the necrotrophic fungal plant pathogens. In the present study, a Pex6 gene encoding an ATPase-associated protein was characterized by analysis of functional mutations in the tangerine pathotype of Alternaria alternata, which produces a host-selective toxin. Peroxisomes were observed in fungal cells by expressing a mCherry fluorescent protein tagging with conserved tripeptides serine-lysing-leucine and transmission electron microscopy. The results indicated that Pex6 plays no roles in peroxisomal biogenesis but impacts protein import into peroxisomes. The number of peroxisomes was affected by nutritional conditions and H2O2, and their degradation was mediated by an autophagy-related machinery termed pexophagy. Pex6 was shown to be required for the formation of Woronin bodies, the biosynthesis of biotin, siderophores, and toxin, the uptake and accumulation of H2O2, growth, and virulence, as well as the Slt2 MAP kinase-mediated maintenance of cell wall integrity. Adding biotin, oleate, and iron in combination fully restored the growth of the pex6-deficient mutant (Δpex6), but failed to restore Δpex6 virulence to citrus. Adding purified toxin could only partially restore Δpex6 virulence even in the presence of biotin, oleate, and iron. Sensitivity assays revealed that Pex6 plays no roles in resistance to H2O2 and superoxide, but plays a negative role in resistance to 2-chloro-5-hydroxypyridine (a hydroxyl radical-generating compound), eosin Y and rose Bengal (singlet oxygen-generating compounds), and 2,3,5-triiodobenzoic acid (an auxin transport inhibitor). The diverse functions of Pex6 underscore the importance of peroxisomes in physiology, pathogenesis, and development in A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Wu Z, Xu H, Liu J, Zhou F, Liang Y. The ESCRT-III complex contributes to macromitophagy in yeast. Traffic 2021; 22:258-273. [PMID: 34089296 DOI: 10.1111/tra.12805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria play important roles in energy generation and homeostasis maintenance in eukaryotic cells. The damaged or superfluous mitochondria can be nonselectively or selectively removed through the autophagy/lysosome pathway, which was referred as mitophagy. According to the molecular machinery for degrading mitochondria, the selectively removed mitochondria can occur through macromitophagy or micromitophagy. In this study, we show that the endosomal sorting complex required for transport III (ESCRT-III) in budding yeast regulates macromitophagy induced by nitrogen starvation, but not by the post-logarithmic phase growth in lactate medium by monitoring a mitochondrial marker, Om45. Firstly, loss of ESCRT-III subunit Snf7 or Vps4-Vta1 complex subunit Vps4, two representative subunits of the ESCRT complex, suppresses the delivery and degradation of Om45-GFP to vacuoles. Secondly, we show that the mitochondrial marker Om45 and mitophagy receptor Atg32 accumulate on autophagosomes marked with Atg8 (mitophagosomes, MPs) in ESCRT mutants. Moreover, the protease-protection assay indicates that Snf7 and Vps4 are involved in MP closure. Finally, Snf7 interacts with Atg11, which was detected by two ways, glutathione-S-transferase (GST) pulldown and bimolecular fluorescence complementation (BiFC) assay, and this BiFC interaction happens on mitochondrial reticulum. Therefore, we proposed that the ESCRT-III machinery mediates nitrogen starvation-induced macromitophagy by the interaction between Snf7 and Atg11 so that Snf7 is recruited to Atg32-marked MPs by the known Atg11-Atg32 interaction to seal them. These results reveal that the ESCRT-III complex plays a new role in yeast on macromitophagy.
Collapse
Affiliation(s)
- Zulin Wu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Haiqian Xu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Junze Liu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
12
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
Affiliation(s)
- Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Chester Jj Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Joseph C Kruempel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Pedro Reis Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| |
Collapse
|
13
|
Pexophagy modes during penicillin biosynthesis in Penicillium rubens P2-32-T. Arch Microbiol 2020; 202:2337-2341. [DOI: 10.1007/s00203-020-01939-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 01/19/2023]
|
14
|
The Swing of Lipids at Peroxisomes and Endolysosomes in T Cell Activation. Int J Mol Sci 2020; 21:ijms21082859. [PMID: 32325900 PMCID: PMC7215844 DOI: 10.3390/ijms21082859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.
Collapse
|
15
|
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Int J Mol Sci 2020; 21:E2205. [PMID: 32210003 PMCID: PMC7139740 DOI: 10.3390/ijms21062205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals. Despite many years of research, some aspects of autophagy are still not fully explained. This mostly concerns the final stages of autophagy, which have not received as much interest from the scientific community as the initial stages of this process. The final stages of autophagy that we take into consideration in this review include the formation and degradation of the autophagic bodies as well as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the available information on the trafficking of the autophagosome towards the vacuole, the fusion of the autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation and degradation of autophagic bodies and metabolite salvage in plant cells.
Collapse
Affiliation(s)
- Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| |
Collapse
|
16
|
Mu Y, Maharjan Y, Dutta RK, Kim H, Wei X, Kim JH, Kim D, Park C, Park R. Dimethyloxaloylglycine induces pexophagy in a HIF-2α dependent manner involving autophagy receptor p62. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30319-3. [PMID: 32075719 DOI: 10.1016/j.bbrc.2020.02.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Peroxisomes are metabolically active oxygen demanding organelles with a high abundance of oxidases making it vulnerable to low oxygen levels such as hypoxic conditions. However, the exact mechanism of peroxisome degradation in hypoxic condition remains elusive. In order to study the mechanism of peroxisome degradation in hypoxic condition, we use Dimethyloxaloylglycine (DMOG), a cell-permeable prolyl-4-hydroxylase inhibitor, which mimics hypoxic condition by stabilizing hypoxia-inducible factors. Here we report that DMOG degraded peroxisomes by selectively activating pexophagy in a HIF-2α dependent manner involving autophagy receptor p62. Furthermore, DMOG not only increased peroxisome turnover by pexophagy but also reduced HIF-2α dependent peroxisome proliferation at the transcriptional level. Taken together, our data suggest that hypoxic condition is a negative regulator for peroxisome abundance through increasing pexophagy and decreasing peroxisome proliferation in HIF-2α dependent manner.
Collapse
Affiliation(s)
- Yizhu Mu
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Yunash Maharjan
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Hyunsoo Kim
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Xiaofan Wei
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Jin Hwi Kim
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
17
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
18
|
Ortega-Martínez M, Gutiérrez-Dávila V, Niderhauser-García A, Salazar-Aranda R, Solís-Soto JM, Montes-de-Oca-Luna R, Jaramillo-Rangel G. Peroxisomicine A1, a potential antineoplastic agent, causes micropexophagy in addition to macropexophagy. Cell Biol Int 2020; 44:918-923. [PMID: 31814220 DOI: 10.1002/cbin.11280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Peroxisomicine A1 (PA1) is a potential antineoplastic agent with high and selective toxicity toward peroxisomes of tumor cells. Pexophagy is a selective autophagy process that degrades damaged peroxisomes; this process has been studied mainly in methylotrophic yeasts. There are two main modes of pexophagy in yeast: macropexophagy and micropexophagy. Previous studies showed that peroxisomes damaged by a prolonged exposition to PA1 are eliminated by macropexophagy. In this work, Candida boidinii was grown in methanol-containing media, and PA1 was added to the cultures at 2 µg/mL after they reached the mid-exponential growth phase. Samples were taken at 5, 10, 15, 20, and 25 min after the addition of PA1 and processed for ultrastructural analysis. Typical morphological characteristics of micropexophagy were observed: the direct engulfment of peroxisomes by the vacuolar membrane and the presence of the micropexophagic membrane apparatus (MIPA), which mediates the fusion between the opposing tips of the vacuole to complete sequestration of peroxisomes from the cytosol. In conclusion, here we report that, in addition to macropexophagy, peroxisomes damaged by PA1 can be eliminated by micropexophagy. This information is useful to deepen the knowledge of the mechanism of action of PA1 and of that of pexophagy per se.
Collapse
Affiliation(s)
- Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| | - Vanessa Gutiérrez-Dávila
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| | - Alberto Niderhauser-García
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| | - Ricardo Salazar-Aranda
- Department of Analytical Chemistry, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| | - Juan M Solís-Soto
- Department of Physiology, School of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre P. y Silao, Monterrey, Nuevo León, 64460, Mexico
| | - Roberto Montes-de-Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| | - Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo Leon, Ave. Madero y Dr. Eduardo Aguirre P., Monterrey, Nuevo León, 64460, Mexico
| |
Collapse
|
19
|
Liao Y, Duan B, Zhang Y, Zhang X, Xia B. Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells. J Biol Chem 2019; 294:20009-20023. [PMID: 31748416 PMCID: PMC6937584 DOI: 10.1074/jbc.ra119.008709] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy is typically a prosurvival cellular process that promotes the turnover of long-lived proteins and damaged organelles, but it can also induce cell death. We have previously reported that the small molecule Z36 induces autophagy along with autophagic cell death in HeLa cells. In this study, we analyzed differential gene expression in Z36-treated HeLa cells and found that Z36-induced endoplasmic reticulum-specific autophagy (ER-phagy) results in ER stress and the unfolded protein response (UPR). This result is in contrast to the common notion that autophagy is generally activated in response to ER stress and the UPR. We demonstrate that Z36 up-regulates the expression levels of FAM134B, LC3, and Atg9, which together mediate excessive ER-phagy, characterized by forming increased numbers of autophagosomes with larger sizes. We noted that the excessive ER-phagy accelerates ER degradation and impairs ER homeostasis and thereby triggers ER stress and the UPR as well as ER-phagy-dependent cell death. Interestingly, overexpression of FAM134B alone in HeLa cells is sufficient to impair ER homeostasis and cause ER stress and cell death. These findings suggest a mechanism involving FAM134B activity for ER-phagy to promote cell death.
Collapse
Affiliation(s)
- Yangjie Liao
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yufei Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
D'Eletto M, Rossin F, Fedorova O, Farrace MG, Piacentini M. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019; 400:125-140. [PMID: 29908126 DOI: 10.1515/hsz-2018-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.
Collapse
Affiliation(s)
- Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Olga Fedorova
- Institute of Cytology, 194064 Saint-Petersburg, Russia
| | - Maria Grazia Farrace
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy.,National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', I-00149 Rome, Italy
| |
Collapse
|
21
|
Borek S, Stefaniak S, Śliwiński J, Garnczarska M, Pietrowska-Borek M. Autophagic Machinery of Plant Peroxisomes. Int J Mol Sci 2019; 20:E4754. [PMID: 31557865 PMCID: PMC6802006 DOI: 10.3390/ijms20194754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes are cell organelles that play an important role in plants in many physiological and developmental processes. The plant peroxisomes harbor enzymes of the β-oxidation of fatty acids and the glyoxylate cycle; photorespiration; detoxification of reactive oxygen and nitrogen species; as well as biosynthesis of hormones and signal molecules. The function of peroxisomes in plant cells changes during plant growth and development. They are transformed from organelles involved in storage lipid breakdown during seed germination and seedling growth into leaf peroxisomes involved in photorespiration in green parts of the plant. Additionally, intensive oxidative metabolism of peroxisomes causes damage to their components. Therefore, unnecessary or damaged peroxisomes are degraded by selective autophagy, called pexophagy. This is an important element of the quality control system of peroxisomes in plant cells. Despite the fact that the mechanism of pexophagy has already been described for yeasts and mammals, the molecular mechanisms by which plant cells recognize peroxisomes that will be degraded via pexophagy still remain unclear. It seems that a plant-specific mechanism exists for the selective degradation of peroxisomes. In this review, we describe the physiological role of pexophagy in plant cells and the current hypotheses concerning the mechanism of plant pexophagy.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jan Śliwiński
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| |
Collapse
|
22
|
Shoemaker CJ, Huang TQ, Weir NR, Polyakov NJ, Schultz SW, Denic V. CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor. PLoS Biol 2019; 17:e2007044. [PMID: 30933966 PMCID: PMC6459555 DOI: 10.1371/journal.pbio.2007044] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
The power of forward genetics in yeast is the foundation on which the field of autophagy research firmly stands. Complementary work on autophagy in higher eukaryotes has revealed both the deep conservation of this process, as well as novel mechanisms by which autophagy is regulated in the context of development, immunity, and neuronal homeostasis. The recent emergence of new clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based technologies has begun facilitating efforts to define novel autophagy factors and pathways by forward genetic screening in mammalian cells. Here, we set out to develop an expanded toolkit of autophagy reporters amenable to CRISPR/Cas9 screening. Genome-wide screening of our reporters in mammalian cells recovered virtually all known autophagy-related (ATG) factors as well as previously uncharacterized factors, including vacuolar protein sorting 37 homolog A (VPS37A), transmembrane protein 251 (TMEM251), amyotrophic lateral sclerosis 2 (ALS2), and TMEM41B. To validate this data set, we used quantitative microscopy and biochemical analyses to show that 1 novel hit, TMEM41B, is required for phagophore maturation. TMEM41B is an integral endoplasmic reticulum (ER) membrane protein distantly related to the established autophagy factor vacuole membrane protein 1 (VMP1), and our data show that these two factors play related, albeit not fully overlapping, roles in autophagosome biogenesis. In sum, our work uncovers new ATG factors, reveals a malleable network of autophagy receptor genetic interactions, and provides a valuable resource (http://crispr.deniclab.com) for further mining of novel autophagy mechanisms.
Collapse
Affiliation(s)
- Christopher J. Shoemaker
- Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts, United States of America
| | - Tina Q. Huang
- Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts, United States of America
| | - Nicholas R. Weir
- Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts, United States of America
| | - Nicole J. Polyakov
- Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts, United States of America
| | - Sebastian W. Schultz
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Northwest Labs, Cambridge, Massachusetts, United States of America
| |
Collapse
|
23
|
Wang C, Fu J, Wang M, Cai Y, Hua X, Du Y, Yang Z, Li Y, Wang Z, Sheng H, Yin N, Liu X, Koehler JE, Yuan C. Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol 2018; 21:e12984. [PMID: 30463105 DOI: 10.1111/cmi.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Bartonella effector proteins (named Beps) are substrates of VirB type IV secretion system for translocation into host cells evolved in Bartonella spp. Among these, BepE has been shown to protect cells from fragmentation effects triggered by other Beps and to promote in vivo dissemination of bacteria from the dermal site of inoculation to the bloodstream. Bacterial pathogens secreted effectors to modulate the interplay with host autophagy, either to combat autophagy to escape its bactericidal effect or to exploit autophagy to benefit intracellular replication. Here, we reported a distinct phenotype that selective autophagy in host cells is activated as a countermeasure, to attack BepE via conjugation with K63 polyubiquitin chain on BepE. We found that ectopic expression of Bartonella quintana BepE specifically induced punctate structures that colocalised with an autophagy marker (LC3-II) in host cells, in addition to filopodia and membrane ruffle formation. Two tandemly arranged Bartonella Intracellular Delivery (BID) domains in the BepE C-terminus, where ubiquitination of sister pairs of lysine residues was confirmed, were essential to activate host cell autophagy. Multiple polyubiquitin chain linkages of K27, K29, K33, and K63 were found to be conjugated at sites of K222 and K365 on BepE, of which K63 polyubiquitination on BepE K365 determined the selective autophagy (p62/SQSTM1 positive autophagy) independent of the PI3K pathway. Colocalisation of BepE with LAMP1 confirmed the maturation of BepE-induced autophagosomes in which BepE were targeted for degradation. Moreover, host cells employed selective autophagy to counter-attack BepE to rescue cells from BepE-induced endocytosis deficiency.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenxia Wang
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Sheng
- Tongren hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yin
- Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jane E Koehler
- Department of Medicine, Division of Infectious Diseases, and the Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, USA
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Veterinary Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Mishra P, Ammanathan V, Manjithaya R. Chemical Biology Strategies to Study Autophagy. Front Cell Dev Biol 2018; 6:160. [PMID: 30538986 PMCID: PMC6277461 DOI: 10.3389/fcell.2018.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Growing amount of evidence in the last two decades highlight that macroautophagy (generally referred to as autophagy) is not only indispensable for survival in yeast but also equally important to maintain cellular quality control in higher eukaryotes as well. Importantly, dysfunctional autophagy has been explicitly shown to be involved in various physiological and pathological conditions such as cell death, cancer, neurodegenerative, and other diseases. Therefore, modulation and regulation of the autophagy pathway has emerged as an alternative strategy for the treatment of various disease conditions in the recent years. Several studies have shown genetic or pharmacological modulation of autophagy to be effective in treating cancer, clearing intracellular aggregates and pathogens. Understanding and controlling the autophagic flux, either through a genetic or pharmacological approach is therefore a highly promising approach and of great scientific interest as spatiotemporal and cell-tissue-organ level autophagy regulation is not clearly understood. Indeed, chemical biology approaches that identify small molecule effectors of autophagy have thus a dual benefit: the modulators act as tools to study and understand the process of autophagy, and may also have therapeutic potential. In this review, we discuss different strategies that have appeared to screen and identify potent small molecule modulators of autophagy.
Collapse
Affiliation(s)
- Piyush Mishra
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Veena Ammanathan
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
25
|
Luo M, Zhuang X. Review: Selective degradation of peroxisome by autophagy in plants: Mechanisms, functions, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:485-491. [PMID: 30080638 DOI: 10.1016/j.plantsci.2018.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Peroxisome, a single-membrane organelle conserved in eukaryotic, is responsible for a series of oxidative reactions with its specific enzymatic components. A counterbalance between peroxisome biogenesis and degradation is crucial for the homeostasis of peroxisomes. One such degradation mechanism, termed pexophagy, is a type of selective autophagic process to deliver the excess/damaged peroxisomes into the vacuole. In plants, pexophagy is involved in the remodeling of seedlings and quality control of peroxisomes. Here, we describe the recent advance in plant pexophagy, with a focus to discuss the key regulators in plants in comparison with those in yeast and mammals, as well as future directions for pexophagy studies in plants.
Collapse
Affiliation(s)
- Mengqian Luo
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
26
|
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N, Chen J, Wang W. Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Rep 2018; 20:737-749. [PMID: 28723574 DOI: 10.1016/j.celrep.2017.06.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022] Open
Abstract
Tankyrase 1 (TNKS) and tankyrase 2 (TNKS2) belong to the poly(ADP-ribose) polymerase family of proteins, which use nicotinamide adenine dinucleotide to modify substrate proteins with ADP-ribose modifications. Emerging evidence has revealed the pathological relevance of TNKS and TNKS2, and identified these two enzymes as potential drug targets. However, the cellular functions and regulatory mechanisms of TNKS/2 are still largely unknown. Through a proteomic analysis, we defined the protein-protein interaction network for human TNKS/2 and revealed more than 100 high-confidence interacting proteins with numerous biological functions in this network. Finally, through functional validation, we uncovered a role for TNKS/2 in peroxisome homeostasis and determined that this function is independent of TNKS enzyme activities. Our proteomic study of the TNKS/2 protein interaction network provides a rich resource for further exploration of tankyrase functions in numerous cellular processes.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mao-Tian Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
27
|
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 2017; 70:32-46. [PMID: 28847414 DOI: 10.1016/j.ceca.2017.08.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Macroautophagy (hereafter called 'autophagy') is a cellular process for degrading and recycling cellular constituents, and for maintenance of cell function. Autophagy initiates via vesicular engulfment of cellular materials and culminates in their degradation via lysosomal hydrolases, with the whole process often being termed 'autophagic flux'. Autophagy is a multi-step pathway requiring the interplay of numerous scaffolding and signalling molecules. In particular, orthologs of the family of ∼30 autophagy-regulating (Atg) proteins that were first characterised in yeast play essential roles in the initiation and processing of autophagic vesicles in mammalian cells. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a master regulator of the canonical autophagic response of cells to nutrient starvation. In addition, AMP-activated protein kinase (AMPK), which is a key sensor of cellular energy status, can trigger autophagy by inhibiting mTOR, or by phosphorylating other downstream targets. Calcium (Ca2+) has been implicated in autophagic signalling pathways encompassing both mTOR and AMPK, as well as in autophagy seemingly not involving these kinases. Numerous studies have shown that cytosolic Ca2+ signals can trigger autophagy. Moreover, introduction of an exogenous chelator to prevent cytosolic Ca2+ signals inhibits autophagy in response to many different stimuli, with suggestions that buffering Ca2+ affects not only the triggering of autophagy, but also proximal and distal steps during autophagic flux. Observations such as these indicate that Ca2+ plays an essential role as a pro-autophagic signal. However, cellular Ca2+ signals can exert anti-autophagic actions too. For example, Ca2+ channel blockers induce autophagy due to the loss of autophagy-suppressing Ca2+ signals. In addition, the sequestration of Ca2+ by mitochondria during physiological signalling appears necessary to maintain cellular bio-energetics, thereby suppressing AMPK-dependent autophagy. This article attempts to provide an integrated overview of the evidence for the proposed roles of various Ca2+ signals, Ca2+ channels and Ca2+ sources in controlling autophagic flux.
Collapse
Affiliation(s)
- Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK.
| | - Tala Chehab
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Katja Rietdorf
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| |
Collapse
|
28
|
Mishra P, Dauphinee AN, Ward C, Sarkar S, Gunawardena AHLAN, Manjithaya R. Discovery of pan autophagy inhibitors through a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms. Autophagy 2017; 13:1556-1572. [PMID: 28792845 PMCID: PMC5612355 DOI: 10.1080/15548627.2017.1339002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to the involvement of macroautophagy/autophagy in different pathophysiological conditions such as infections, neurodegeneration and cancer, identification of novel small molecules that modulate the process is of current research and clinical interest. In this work, we developed a luciferase-based sensitive and robust kinetic high-throughput screen (HTS) of small molecules that modulate autophagic degradation of peroxisomes in the budding yeast Saccharomyces cerevisiae. Being a pathway-specific rather than a target-driven assay, we identified small molecule modulators that acted at key steps of autophagic flux. Two of the inhibitors, Bay11 and ZPCK, obtained from the screen were further characterized using secondary assays in yeast. Bay11 inhibited autophagy at a step before fusion with the vacuole whereas ZPCK inhibited the cargo degradation inside the vacuole. Furthermore, we demonstrated that these molecules altered the process of autophagy in mammalian cells as well. Strikingly, these molecules also modulated autophagic flux in a novel model plant, Aponogeton madagascariensis. Thus, using small molecule modulators identified by using a newly developed HTS autophagy assay, our results support that macroautophagy is a conserved process across fungal, animal and plant kingdoms.
Collapse
Affiliation(s)
- Piyush Mishra
- a Molecular Biology and Genetics Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore , India
| | - Adrian N Dauphinee
- b Biology Department, Life Sciences Centre , Dalhousie University , Halifax , NS , Canada
| | - Carl Ward
- c Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences , University of Birmingham , Edgbaston, Birmingham , UK
| | - Sovan Sarkar
- c Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences , University of Birmingham , Edgbaston, Birmingham , UK
| | | | - Ravi Manjithaya
- a Molecular Biology and Genetics Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore , India
| |
Collapse
|
29
|
Torggler R, Papinski D, Kraft C. Assays to Monitor Autophagy in Saccharomyces cerevisiae. Cells 2017; 6:cells6030023. [PMID: 28703742 PMCID: PMC5617969 DOI: 10.3390/cells6030023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an intracellular process responsible for the degradation and recycling of cytoplasmic components. It selectively removes harmful cellular material and enables the cell to survive starvation by mobilizing nutrients via the bulk degradation of cytoplasmic components. While research over the last decades has led to the discovery of the key factors involved in autophagy, the pathway is not yet completely understood. The first studies of autophagy on a molecular level were conducted in the yeast Saccharomyces cerevisiae. Building up on these studies, many homologs have been found in higher eukaryotes. Yeast remains a highly relevant model organism for studying autophagy, with a wide range of established methods to elucidate the molecular details of the autophagy pathway. In this review, we provide an overview of methods to study both selective and bulk autophagy, including intermediate steps in the yeast Saccharomyces cerevisiae. We compare different assays, discuss their advantages and limitations and list potential applications.
Collapse
Affiliation(s)
- Raffaela Torggler
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daniel Papinski
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Claudine Kraft
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
30
|
Li H, Cui Y, Zhang L, Zhang L, Liu H, Yu J. Optimization of recombinant Zea mays transglutaminase production and its influence on the functional properties of yogurt. Food Sci Biotechnol 2017; 26:723-730. [PMID: 30263597 DOI: 10.1007/s10068-017-0083-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/01/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
The requirements for the production of optimized Zea mays transglutaminase (TGZo) using Pichia pastoris GS115 (pPIC9K-tgzo) were optimized in this study. Plackett-Burman design was used to screen variables that significantly influence TGZo production. Oleic acid, methanol, and loading volume were identified as the most significant parameters. Central composite design was employed to determine the optimal level of these three parameters for TGZo production. Results showed that 1078 mU/mL of TGZo activity and 7.6 mg/L of TGZo production were obtained under conditions of 0.07% oleic acid, 1.31% methanol, and 7.36% loading volume. To explore the functional characteristics of TGZo, it was used in yogurt. It was found that the addition of TGZo could produce yogurt with stronger acid gel and higher consistency, cohesiveness, index of viscosity, and apparent viscosity than the untreated product. Therefore, TGZo can be used as a substitute for microbial transglutaminase in the yogurt, even in the food industry.
Collapse
Affiliation(s)
- Hongbo Li
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Yanhua Cui
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lanwei Zhang
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lili Zhang
- 3College of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Hui Liu
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Jinghua Yu
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| |
Collapse
|
31
|
Moon JY, Choi SJ, Heo CH, Kim HM, Kim HS. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation. FEBS J 2017; 284:2052-2065. [DOI: 10.1111/febs.14103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yun Moon
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| | - Su Jin Choi
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| | - Cheol Ho Heo
- Departments of Chemistry and Energy Systems Research; Ajou University; Suwon Korea
| | - Hwan Myung Kim
- Departments of Chemistry and Energy Systems Research; Ajou University; Suwon Korea
| | - Hye Sun Kim
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| |
Collapse
|
32
|
Yan S, Huda N, Khambu B, Yin XM. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids 2017; 49:1965-1979. [PMID: 28478585 DOI: 10.1007/s00726-017-2429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved lysosome-mediated cellular degradation program. Accumulating evidence shows that autophagy is important to the maintenance of liver homeostasis. Autophagy involves recycling of cellular nutrients recycling as well as quality control of subcellular organelles. Autophagy deficiency in the liver causes various liver pathologies. Fatty liver disease (FLD) is characterized by the accumulation of lipids in hepatocytes and the dysfunction in energy metabolism. Autophagy is negatively affected by the pathogenesis of FLD and the activation of autophagy could ameliorate steatosis, which suggests a potential therapeutic approach to FLD. In this review, we will discuss autophagy and its relevance to liver diseases, especially FLD. In addition, we will discuss recent findings on potential therapeutic applications of autophagy modulators for FLD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
34
|
188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. Int J Mol Sci 2017; 18:ijms18050903. [PMID: 28441355 PMCID: PMC5454816 DOI: 10.3390/ijms18050903] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer.
Collapse
|
35
|
Chen X, Shen M, Yang J, Xing Y, Chen D, Li Z, Zhao W, Zhang Y. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:222-237. [PMID: 26950649 PMCID: PMC6638267 DOI: 10.1111/mpp.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.
Collapse
Affiliation(s)
- Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhan430070China
| | - Mi Shen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yunfei Xing
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
36
|
Abstract
Cells depend on the lysosome for sequestration and degradation of macromolecules in order to maintain metabolic homeostasis. These membrane-enclosed organelles can receive intracellular and extracellular cargo through endocytosis, phagocytosis, and autophagy. Lysosomes establish acidic environments to activate enzymes that are able to break down biomolecules engulfed through these various pathways. Recent advances in methods to study the lysosome have allowed the discovery of extended roles for the lysosome in various diseases, including cancer, making it an attractive and targetable node for therapeutic intervention. This review focuses on key aspects of lysosomal biology in the context of cancer and how these properties can be exploited for the development of new therapeutic strategies. This will provide a contextual framework for how advances in methodology could be applied in future translational research.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 777 South Tower PCAM, 34th St. and Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 777 South Tower PCAM, 34th St. and Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Li Z, Schulze RJ, Weller SG, Krueger EW, Schott MB, Zhang X, Casey CA, Liu J, Stöckli J, James DE, McNiven MA. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. SCIENCE ADVANCES 2016; 2:e1601470. [PMID: 28028537 PMCID: PMC5161429 DOI: 10.1126/sciadv.1601470] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/15/2016] [Indexed: 05/15/2023]
Abstract
The autophagic digestion of lipid droplets (LDs) through lipophagy is an essential process by which most cells catabolize lipids as an energy source. However, the cellular machinery used for the envelopment of LDs during autophagy is poorly understood. We report a novel function for a small Rab guanosine triphosphatase (GTPase) in the recruitment of adaptors required for the engulfment of LDs by the growing autophagosome. In hepatocytes stimulated to undergo autophagy, Rab10 activity is amplified significantly, concomitant with its increased recruitment to nascent autophagic membranes at the LD surface. Disruption of Rab10 function by small interfering RNA knockdown or expression of a GTPase-defective variant leads to LD accumulation. Finally, Rab10 activation during autophagy is essential for LC3 recruitment to the autophagosome and stimulates its increased association with the adaptor protein EHBP1 (EH domain binding protein 1) and the membrane-deforming adenosine triphosphatase EHD2 (EH domain containing 2) that, together, are essential in driving the activated "engulfment" of LDs during lipophagy in hepatocytes.
Collapse
Affiliation(s)
- Zhipeng Li
- Biochemistry and Molecular Biology Program, Mayo Graduate School, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Corresponding author. (M.A.M.); (R.J.S.)
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, 13400 E Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, 13400 E Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - David E. James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Corresponding author. (M.A.M.); (R.J.S.)
| |
Collapse
|
38
|
Guo B, Tam A, Santi SA, Parissenti AM. Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorubicin in MCF-7 cells. BMC Cancer 2016; 16:762. [PMID: 27687594 PMCID: PMC5043608 DOI: 10.1186/s12885-016-2790-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Background The roles and mechanisms involved in starvation-induced autophagy in mammalian cells have been extensively studied. However, less is known about the potential role for autophagy as a survival pathway in acquired drug resistance in cancer cells under nutrient-rich conditions. Methods We selected MCF-7 breast tumor cells for survival in increasing concentrations of doxorubicin and assessed whether the acquisition of doxorubicin resistance was accompanied by changes in doxorubicin and lysosome localization and the activation of autophagy, as assessed by laser scanning confocal microscopy with or without immunohistochemical approaches. The ultrastructure of cells was also viewed using transmission electron microscopy. Cellular levels of autophagy and apoptosis-related proteins were assessed by immunoblotting techniques, while protein turnover was quantified using a flux assay. Results As cells acquired resistance to doxorubicin, the subcellular location of the drug moved from the nucleus to the perinuclear region. The location of lysosomes and autophagosomes also changed from being equally distributed throughout the cytoplasm to co-localizing with doxorubicin in the perinuclear region. There was an apparent temporal correlation between the acquisition of doxorubicin resistance and autophagy induction, as measured by increases in monodansylcadaverine staining, LC3-II production, and co-localization of LAMP1 and LC3-II immunofluorescence. Electron microscopy revealed an increase in cytoplasmic vacuoles containing mitochondria and other cellular organelles, also suggestive of autophagy. Consistent with this view, a known autophagy inhibitor (chloroquine) was highly effective in restoring doxorubicin sensitivity in doxorubicin-resistant cells. Moreover, this induction of autophagy correlated temporally with increased expression of the selective cargo receptor p62, which facilitates the delivery of doxorubicin-damaged mitochondria and other organelles to autophagosomes. Finally, we suggest that autophagy associated with doxorubicin resistance may be distinct from classical starvation-induced autophagy, since Beclin 1 and Atg7 expression did not change upon acquisition of doxorubicin resistance, nor did recombinant Bcl2 overexpression or an Atg7 knockdown alter doxorubicin cytotoxicity. Conclusion Taken together, our findings suggest that doxorubicin resistance in MCF-7 breast cancer cells is mediated, at least in part, by the activation of autophagy, which may be distinct from starvation-induced autophagy.
Collapse
Affiliation(s)
- Baoqing Guo
- Health Sciences North Research Institute, Sudbury, ON, P3E 5J1, Canada
| | - Adam Tam
- Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Stacey A Santi
- Health Sciences North Research Institute, Sudbury, ON, P3E 5J1, Canada
| | - Amadeo M Parissenti
- Health Sciences North Research Institute, Sudbury, ON, P3E 5J1, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada. .,Faculty of Medicine, Division of Oncology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
39
|
Kurzątkowski W, Gębska-Kuczerowska A. Pexophagy in Penicillin G Secretion by Penicillium chrysogenum PQ-96. Pol J Microbiol 2016; 65:365-368. [DOI: 10.5604/17331331.1215616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Penicillin G oversecretion by Penicillium chrysogenum PQ-96 is associated with a strictly adjusted cellular organization of the mature and senescent mycelial cells. Abundant vacuolar phagy and extended cellular vacuolization combined with vacuolar budding resulting in the formation of vacuolar vesicles that fuse with the cell membrane are the most important characteristic features of those cells. We suggest as follows: if the peroxisomes are integrated into vacuoles, the penicillin G formed in peroxisomes might be transferred to vacuoles and later secreted out of the cells by an exocytosis process. The peroxisomal cells of the mycelium are privileged in penicillin G secretion.
Collapse
|
40
|
MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae. PLoS Pathog 2016; 12:e1005823. [PMID: 27556292 PMCID: PMC4996533 DOI: 10.1371/journal.ppat.1005823] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. Dynamin superfamily members are involved in budding of transport vesicles and division of organelles in eukaryotic cells. To further understand how dynamins function in phytopathogenic fungi, we characterized several dynamin-related proteins from the rice blast fungus M. oryzae. In addition to revealing major conserved dynamin functions, we described how MoDnm1 interacts with mitochondrial fission protein MoFis1 and WD repeat adaptor protein MoMdv1 to mediate peroxisomal and mitochondrial fission, pexophagy and mitophagy. Importantly, we provided evidence to demonstrate that MoDnm1-, MoFis1- and MoMdv1-dependent peroxisomal and mitochondrial functions are linked to differentiation and pathogenicity of the rice blast fungus.
Collapse
|
41
|
Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem Biophys Res Commun 2016; 477:534-540. [PMID: 27246734 DOI: 10.1016/j.bbrc.2016.05.148] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is one of the most serious nervous system disorders characterised by high morbidity and disability. Inflammatory and autophagy responses play an important role in the development of SCI. Metformin, a first-line drug for type-2 diabetes, features autophagy promotion as well as anti-inflammatory and anti-apoptotic properties in the nervous system. In this study, we investigated the neuroprotection effects of metformin preconditioning on rats after SCI. Results of Basso, Beattie and Bresnahan scores, HE staining and Nissl staining showed that the function and quantity of motor neurons were protected by metformin after SCI. Western blot revealed that the expression of Beclin-1 and LC3B-II was enhanced, and the phosphorylation levels of the mammalian target of rapamycin (mTOR) protein and p70S6K were reduced by metformin after SCI. Metformin significantly reduced the expression of NF-κB. Moreover, Western blot and immunofluorescence results indicated that caspase 3 activation was reduced, whereas bcl-2 level was significantly increased by metformin. Hence, metformin attenuated SCI by inhibiting apoptosis and inflammation and enhancing the autophagy via the mTOR/p70S6K signalling pathway.
Collapse
|
42
|
Pexophagy in yeasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:992-8. [DOI: 10.1016/j.bbamcr.2015.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 01/07/2023]
|
43
|
Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:984-91. [DOI: 10.1016/j.bbamcr.2015.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
|
44
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
45
|
Wu SY, Lan SH, Liu HS. Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2016; 22:176-187. [PMID: 26755869 PMCID: PMC4698484 DOI: 10.3748/wjg.v22.i1.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 350 million people worldwide are chronically infected by hepatitis B virus (HBV). HBV causes severe liver diseases including cirrhosis and hepatocellular carcinoma (HCC). In about 25% of affected patients, HBV infection proceeds to HCC. Therefore, the mechanisms by which HBV affects the host cell to promote viral replication and its pathogenesis have been the subject of intensive research efforts. Emerging evidence indicates that both autophagy and microRNAs (miRNAs) are involved in HBV replication and HBV-related hepatocarcinogenesis. In this review, we summarize how HBV induces autophagy, the role of autophagy in HBV infection, and HBV-related tumorigenesis. We further discuss the emerging roles of miRNAs in HBV infection and how HBV affects miRNAs biogenesis. The accumulating knowledge pertaining to autophagy and miRNAs in HBV replication and its pathogenesis may lead to the development of novel strategies against HBV infection and HBV-related HCC tumorigenesis.
Collapse
|
46
|
Costa L, Amaral C, Teixeira N, Correia-da-Silva G, Fonseca BM. Cannabinoid-induced autophagy: Protective or death role? Prostaglandins Other Lipid Mediat 2015; 122:54-63. [PMID: 26732541 DOI: 10.1016/j.prostaglandins.2015.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
Autophagy, the "self-digestion" mechanism of the cells, is an evolutionary conserved catabolic process that targets portions of cytoplasm, damaged organelles and proteins for lysosomal degradation, which plays a crucial role in development and disease. Cannabinoids are active compounds of Cannabis sativa and the most prevalent psychoactive substance is Δ(9)-tetrahydrocannabinol (THC). Cannabinoid compounds can be divided in three types: the plant-derived natural products (phytocannabinoids), the cannabinoids produced endogenously (endocannabinoids) and the synthesized compounds (synthetic cannabinoids). Various studies reported a cannabinoid-induced autophagy mechanism in cancer and non-cancer cells. In this review we focus on the recent advances in the cannabinoid-induced autophagy and highlight the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Lia Costa
- Departamento de Biologia, Universidade de Aveiro, Portugal; UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
47
|
Cull B, Prado Godinho JL, Fernandes Rodrigues JC, Frank B, Schurigt U, Williams RA, Coombs GH, Mottram JC. Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 2015; 10:2143-57. [PMID: 25484087 PMCID: PMC4502677 DOI: 10.4161/auto.36438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.
Collapse
Affiliation(s)
- Benjamin Cull
- a Wellcome Trust Center for Molecular Parasitology; Institute of Infection, Immunity and Inflammation; College of Medical, Veterinary and Life Sciences ; University of Glasgow ; Glasgow , UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lionaki E, Markaki M, Palikaras K, Tavernarakis N. Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1412-23. [DOI: 10.1016/j.bbabio.2015.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
|
49
|
Goto-Yamada S, Mano S, Yamada K, Oikawa K, Hosokawa Y, Hara-Nishimura I, Nishimura M. Dynamics of the Light-Dependent Transition of Plant Peroxisomes. PLANT & CELL PHYSIOLOGY 2015; 56:1264-71. [PMID: 26063394 DOI: 10.1093/pcp/pcv081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/29/2015] [Indexed: 05/21/2023]
Abstract
Peroxisomes are present in almost all plant cells. These organelles are involved in various metabolic processes, such as lipid catabolism and photorespiration. A notable feature of plant peroxisomes is their flexible adaptive responses to environmental conditions such as light. When plants shift from heterotrophic to autotrophic growth during the post-germinative stage, peroxisomes undergo a dynamic response, i.e. enzymes involved in lipid catabolism are replaced with photorespiratory enzymes. Although the detailed molecular mechanisms underlying the functional transition of peroxisomes have previously been unclear, recent analyses at the cellular level have enabled this detailed machinery to be characterized. During the functional transition, obsolete enzymes are degraded inside peroxisomes by Lon protease, while newly synthesized enzymes are transported into peroxisomes. In parallel, mature and oxidized peroxisomes are eliminated via autophagy; this functional transition occurs in an efficient manner. Moreover, it has become clear that quality control mechanisms are important for the peroxisomal response to environmental stimuli. In this review, we highlight recent advances in elucidating the molecular mechanisms required for the regulation of peroxisomal roles in response to changes in environmental conditions.
Collapse
Affiliation(s)
| | - Shoji Mano
- Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, 444-8585 Japan Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585 Japan
| | - Kenji Yamada
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181 Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan Present address: Research Enhancement Strategy Office, National Institute for Basic Biology, Okazaki, 444-8585 Japan.
| |
Collapse
|
50
|
Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci Rep 2015; 5:9719. [PMID: 25900611 PMCID: PMC5386246 DOI: 10.1038/srep09719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 01/25/2023] Open
Abstract
Recently, microbe-plant interactions at the above-ground parts have attracted great attention. Here we describe nitrogen metabolism and regulation of autophagy in the methylotrophic yeast Candida boidinii, proliferating and surviving on the leaves of Arabidopsis thaliana. After quantitative analyses of yeast growth on the leaves of A. thaliana with the wild-type and several mutant yeast strains, we showed that on young leaves, nitrate reductase (Ynr1) was necessary for yeast proliferation, and the yeast utilized nitrate as nitrogen source. On the other hand, a newly developed methylamine sensor revealed appearance of methylamine on older leaves, and methylamine metabolism was induced in C. boidinii, and Ynr1 was subjected to degradation. Biochemical and microscopic analysis of Ynr1 in vitro during a shift of nitrogen source from nitrate to methylamine revealed that Ynr1 was transported to the vacuole being the cargo for biosynthetic cytoplasm-to-vacuole targeting (Cvt) pathway, and degraded. Our results reveal changes in the nitrogen source composition for phyllospheric yeasts during plant aging, and subsequent adaptation of the yeasts to this environmental change mediated by regulation of autophagy.
Collapse
|