1
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Benarroch L, Madsen-Østerbye J, Abdelhalim M, Mamchaoui K, Ohana J, Bigot A, Mouly V, Bonne G, Bertrand AT, Collas P. Cellular and Genomic Features of Muscle Differentiation from Isogenic Fibroblasts and Myoblasts. Cells 2023; 12:1995. [PMID: 37566074 PMCID: PMC10417614 DOI: 10.3390/cells12151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.
Collapse
Affiliation(s)
- Louise Benarroch
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Jessica Ohana
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
3
|
Zhang Y, Lu Y, Li X, Zhang S, Liu P, Hao X, Han J. The novel role of IFITM1-3 in myogenic differentiation of C2C12 cells. Intractable Rare Dis Res 2023; 12:180-190. [PMID: 37662621 PMCID: PMC10468414 DOI: 10.5582/irdr.2023.01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2, and 3) play a critical role in preventing pathogen infection in vertebrates. They are also involved in the occurrence and prognosis of cancer. Myogenesis is a complex process regulated by several factors. This study disclosed that Ifitm1-3 were upregulated in the process of myogenic differentiation of C2C12 myoblasts on days 3, 5, and 7. This positively correlated with the expression of differentiation factors MyoD, myogenin, Mrf5, and desmin. Furthermore, knockdown of Ifitm1-3 by their individual siRNAs inhibited myogenesis of C2C12 myoblasts, with relative downregulation of MyoD, myogenin, Mrf5, and desmin. Subsequently, myotube formation and fusion percentage decreased. Co-immunoprecipitation combined with LC-MS/MS analysis uncovered the interaction proteins of IFITM1 and IFITM3 in C2C12 myoblasts. A total of 84 overlapped interaction proteins of IFITM1 and IFITM3 were identified, and one of the clusters was engaged in cytoskeletal and sarcomere proteins, including desmin, myosin, actin, vimentin, nestin, ankycorbin, and nucleolin. Hence, we hypothesize that these interacting proteins may function as scaffolds for IFITM1-3, possibly through the interaction protein desmin to initiate further interaction with other proteins to participate in myogenesis; however, the molecular mechanisms remain unclear. Our study may contribute to the development of novel therapeutics for myopathic diseases.
Collapse
Affiliation(s)
- Yongtao Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xianxian Li
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Shanshan Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Pengchao Liu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiaoyang Hao
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
4
|
Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer. Bioact Mater 2023; 25:360-373. [PMID: 36879666 PMCID: PMC9984297 DOI: 10.1016/j.bioactmat.2023.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-β1 (TGF-β1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-β1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.
Collapse
|
5
|
Omata S, Fukuda K, Sakai Y, Ohuchida K, Morita Y. Effect of extracellular matrix fiber cross-linkage on cancer cell motility and surrounding matrix deformation. Biochem Biophys Res Commun 2023; 673:44-50. [PMID: 37356144 DOI: 10.1016/j.bbrc.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Cancer incidence is increasing annually, and the invasion of cancer into the stroma significantly affects cancer metastasis. The stroma primarily comprises an abundant extracellular matrix (ECM) that interacts closely with cancer cells. Cancer cells use the ECM as a scaffold to migrate from a tumor via mechanical actions such as pushing and pulling the fibers. The purpose of this study is to clarify the effects of elastic modulus differences on cell migration behavior based on the same ECM fiber structure. We observe temporal changes in the morphology of cancer cells and the surrounding ECM to elucidate the relationship between changes in the mechanical properties of the ECM and the invasive behavior of cancer cells. We analyze the shape and migration distance of cancer cells and the displacement field of the ECM by varying the fiber elastic modulus but fixing the ECM density. Increasing the elastic modulus results in a protruding cell shape, which indicates the maximum displacement of the ECM around the cell. Additionally, differences in cell migration speed and dispersion based on the elastic modulus are observed. The behavior of cells with increasing elasticity is classified via cluster analysis. Owing to the chemical cross-linking of the fibers, some cells cannot deform the surrounding tissue. This is attributable to the gel state of the ECM and microscopic fluctuations in the fiber density around the cells. We successfully assessed the effect of changes in the ECM modulus on cell mortality and morphology to reveal the mechanism of cancer invasion.
Collapse
Affiliation(s)
- Seiji Omata
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 8608555, Japan
| | - Keisuke Fukuda
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 8608555, Japan
| | - Yurie Sakai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 8608555, Japan
| | - Kenoki Ohuchida
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, 8128582, Japan
| | - Yasuyuki Morita
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 8608555, Japan.
| |
Collapse
|
6
|
Lin X, Yang Y, Ji Y, Wang G, Xu W, Wang B, Guo H, Ren J, Yan J, Wang N. MiR-135a-5p/SP1 Axis Regulates Spinal Astrocyte Proliferation and Migration. Neuroscience 2023; 515:12-24. [PMID: 36764602 DOI: 10.1016/j.neuroscience.2023.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Following spinal cord injury (SCI), astrocyte activation and proliferation result in the development of glial scars, which impede axonal growth and neurological recovery. Dysregulation of microRNAs (miRNAs) during SCI results in altered expression of downstream genes. Our previous study has revealed that miR-135a-5p regulates neuronal apoptosis and axonal growth by targeting specificity protein 1 (SP1). This study attempted to investigate whether the miR-135a-5p/SP1 axis has regulatory effect on astrocytes. Herein, lipopolysaccharide (LPS) reduced miR-135a-5p expression in astrocytes. miR-135a-5p overexpression in astrocytes resulted in a decrease in CyclinD1, MMP9, GFAP, and vimentin proteins, and thus attenuated LPS-induced proliferation and migration of astrocytes. Moreover, miR-135a-5p overexpression decreased astrocyte size and the total quantity of cell protrusions, suggesting a role for miR-135a-5p in regulating astrocyte morphology. SP1 silencing also decreased astrocyte proliferation and migration by LPS. SP1 silencing could significantly reverse the promoting effect of miR-135a-5p inhibition on astrocyte proliferation and migration. In summary, the miR-135a-5p/SP1 axis regulates astrocyte proliferation and migration after SCI. This finding benefits for the development of novel ways in treating SCI effectively.
Collapse
Affiliation(s)
- Xin Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Ye Ji
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Guangxi Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Wenbo Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Bo Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Hangyu Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jiyu Ren
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jinglong Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| | - Nanxiang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
7
|
Sacristán-Gómez P, Serrano-Somavilla A, Castro-Espadas L, Sánchez de la Blanca Carrero N, Sampedro-Núñez M, Muñoz-De-Nova JL, Molina-Jiménez F, Rosell A, Marazuela M, Martínez-Hernández R. Evaluation of Epithelial-Mesenchymal Transition Markers in Autoimmune Thyroid Diseases. Int J Mol Sci 2023; 24:3359. [PMID: 36834770 PMCID: PMC9965822 DOI: 10.3390/ijms24043359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A state of chronic inflammation is common in organs affected by autoimmune disorders, such as autoimmune thyroid diseases (AITD). Epithelial cells, such as thyroid follicular cells (TFCs), can experience a total or partial transition to a mesenchymal phenotype under these conditions. One of the major cytokines involved in this phenomenon is transforming growth factor beta (TGF-β), which, at the initial stages of autoimmune disorders, plays an immunosuppressive role. However, at chronic stages, TGF- β contributes to fibrosis and/or transition to mesenchymal phenotypes. The importance of primary cilia (PC) has grown in recent decades as they have been shown to play a key role in cell signaling and maintaining cell structure and function as mechanoreceptors. Deficiencies of PC can trigger epithelial-mesenchymal transition (EMT) and exacerbate autoimmune diseases. A set of EMT markers (E-cadherin, vimentin, α-SMA, and fibronectin) were evaluated in thyroid tissues from AITD patients and controls through RT-qPCR, immunohistochemistry (IHC), and western blot (WB). We established an in vitro TGF-β-stimulation assay in a human thyroid cell line to assess EMT and PC disruption. EMT markers were evaluated in this model using RT-qPCR and WB, and PC was evaluated with a time-course immunofluorescence assay. We found an increased expression of the mesenchymal markers α-SMA and fibronectin in TFCs in the thyroid glands of AITD patients. Furthermore, E-cadherin expression was maintained in these patients compared to the controls. The TGF-β-stimulation assay showed an increase in EMT markers, including vimentin, α-SMA, and fibronectin in thyroid cells, as well as a disruption of PC. The TFCs from the AITD patients experienced a partial transition to a mesenchymal phenotype, preserving epithelial characteristics associated with a disruption in PC, which might contribute to AITD pathogenesis.
Collapse
Affiliation(s)
- Pablo Sacristán-Gómez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Lía Castro-Espadas
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Nuria Sánchez de la Blanca Carrero
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - José Luis Muñoz-De-Nova
- Department of General and Digestive Surgery, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Francisca Molina-Jiménez
- Gastroenterology Research Unit, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Alejandra Rosell
- Pathology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
- Faculty of Medicine, Universidad San Pablo CEU, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain
| |
Collapse
|
8
|
Chong GLW, Böhmert B, Lee LEJ, Bols NC, Dowd GC. A continuous myofibroblast precursor cell line from the tail muscle of Australasian snapper (Chrysophrys auratus) that responds to transforming growth factor beta and fibroblast growth factor. In Vitro Cell Dev Biol Anim 2022; 58:922-935. [PMID: 36378268 PMCID: PMC9780137 DOI: 10.1007/s11626-022-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFβ), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFβ exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.
Collapse
Affiliation(s)
- Gavril L. W. Chong
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Björn Böhmert
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Lucy E. J. Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8 Canada
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| |
Collapse
|
9
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
10
|
Kim BK, Kim DM, Park H, Kim SK, Hwang MA, Lee J, Kang MJ, Byun JE, Im JY, Kang M, Park KC, Yeom YI, Kim SY, Jung H, Kweon DH, Cheong JH, Won M. Synaptotagmin 11 scaffolds MKK7-JNK signaling process to promote stem-like molecular subtype gastric cancer oncogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:212. [PMID: 35768842 PMCID: PMC9241269 DOI: 10.1186/s13046-022-02420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Background Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. Methods In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient’s survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. Results SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. Conclusion SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02420-3.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jungwoon Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Environmental Diseases Research Center, KRIBB, Daejeon, South Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Seon-Young Kim
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Korea Bioinformation Center, KRIBB, Daejeon, South Korea
| | - Haiyoung Jung
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. .,Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| |
Collapse
|
11
|
Karoii DH, Azizi H, Amirian M. Signaling Pathways and Protein-Protein Interaction of Vimentin in Invasive and Migration Cells: A Review. Cell Reprogram 2022; 24:165-174. [PMID: 35749708 DOI: 10.1089/cell.2022.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vimentin (encoded by VIM) is one of the 70 human intermediate filaments (IFs), building highly dynamic and cell-type-specific web networks in the cytoplasm. Vim-/- mice exhibit process defects associated with cell differentiation, which can have implications for understanding cancer and disease. This review showed recent reports from studies that unveiled vimentin intermediate filaments (VIFs) as an essential component of the cytoskeleton, followed by a description of vimentin's physiological functions and process reports in VIF signaling pathway and gene network studies. The main focus of the discussion is on vital signaling pathways associated with how VIF coordinates invasion cells and migration. The current research will open up multiple processes to research the function of VIF and other IF proteins in cellular and molecular biology, and they will lead to essential insights into different VIF levels for the invasive metastatic cancer cells. Enrich GO databases used Gene Ontology and Pathway Enrichment Analysis. Estimation with STRING online was to predict the functional and molecular interactions of proteins-protein with Cytoscape analysis to search and select the master genes. Using Cytoscape and STRING analysis, we presented eight genes, RhoA, Smad3, Akt1, Cdk2, Rock1, Rock2, Mapk1, and Mapk8, as the essential protein-protein interaction with vimentin involved in the invasion.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Mahdi Amirian
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
13
|
Mogre S, Makani V, Pradhan S, Devre P, More S, Vaidya M, Dmello C. Biomarker Potential of Vimentin in Oral Cancers. Life (Basel) 2022; 12:150. [PMID: 35207438 PMCID: PMC8879320 DOI: 10.3390/life12020150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited. Thus, developing biological markers that will serve as an adjunct to histodiagnosis has become essential. Our previous studies comprehensively demonstrated that aberrant vimentin expression in oral premalignant lesions correlates to the degree of malignancy. Likewise, overwhelming research from various groups show a substantial contribution of vimentin in oral cancer progression. In this review, we have described studies on vimentin in oral cancers, to make a compelling case for vimentin as a prognostic biomarker.
Collapse
Affiliation(s)
- Saie Mogre
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Vidhi Makani
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Swapnita Pradhan
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Pallavi Devre
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Shyam More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Milind Vaidya
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Guadagnin E, Mohassel P, Johnson KR, Yang L, Santi M, Uapinyoying P, Dastgir J, Hu Y, Dillmann A, Cookson MR, Foley AR, Bönnemann CG. Transcriptome analysis of collagen VI-related muscular dystrophy muscle biopsies. Ann Clin Transl Neurol 2021; 8:2184-2198. [PMID: 34729958 PMCID: PMC8607456 DOI: 10.1002/acn3.51450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To define the transcriptomic changes responsible for the histologic alterations in skeletal muscle and their progression in collagen VI‐related muscular dystrophy (COL6‐RD). Methods COL6‐RD patient muscle biopsies were stratified into three groups based on the overall level of pathologic severity considering degrees of fibrosis, muscle fiber atrophy, and fatty replacement of muscle tissue. Using microarray and RNA‐Seq, we then performed global gene expression profiling on the same muscle biopsies and compared their transcriptome with age‐ and sex‐matched controls. Results COL6‐RD muscle biopsy transcriptomes as a group revealed prominent upregulation of muscle extracellular matrix component genes and the downregulation of skeletal muscle and mitochondrion‐specific genes. Upregulation of the TGFβ pathway was the most conspicuous change across all biopsies and was fully evident even in the mildest/earliest histological group. There was no difference in the overall transcriptional signature between the different histologic groups but polyserial analysis identified relative changes along with COL6‐RD histological severity. Interpretation Overall, our study establishes the prominent dysregulation of extracellular matrix genes, TGFβ signaling, and its downstream cellular pathways at the transcriptomic level in COL6‐RD muscle.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, BG 10 RM 5S223, Bethesda, Maryland, 20892, USA
| | - Lin Yang
- Division of Biomedical Informatics, Department of Biomedical Engineering, University of Florida, 1064 Center Drive, NEB 364, Gainsville, Florida, 32611, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, 324 South 34th Street, Philadelphia, Pennsylvania, 19104, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Atlantic Health System, Goryeb Children's Hospital, Morristown, New Jersey, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Allissa Dillmann
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| |
Collapse
|
15
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 2021; 13:4985. [PMID: 34638469 PMCID: PMC8507690 DOI: 10.3390/cancers13194985] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Naushin H. Waseem
- UCL Institute of Ophthalmology, 11-43 Bath Str., London EC1V 9EL, UK;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Ahmad Jamal
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| |
Collapse
|
16
|
Shi S, Li C, Zhang Y, Deng C, Tan M, Pan G, Du J, Ji Y, Li Q, Liang H, Liu W, Guo L, Zhao G, Liu Y, Cui H. Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21 Cip1/WAF1. Am J Cancer Res 2021; 11:1391-1409. [PMID: 33948364 PMCID: PMC8085853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023] Open
Abstract
Lycorine hydrochloride (LH) is an active ingredient sourced from the medicinal herb Lycoris radiata. Previous studies have suggested that LH exerts tumor suppression activity in several human cancers. However, the anti-cancer effect of LH in melanoma and the potential molecular mechanisms still need to be further studied. p21Cip1/WAF1, unlike its traditional cyclin-dependent kinase (CDK) inhibitor role, is believed to act as an oncogene under certain cellular conditions. In this research, an increased expression of p21Cip1/WAF1 was found in human melanoma tissues and positively related to the tumor invasion depth. High level of p21Cip1/WAF1 was found to correlate with bad outcomes of melanoma patients by Kaplan-Meier survival analysis. Functional experiments demonstrated that the proliferation, migration and invasion ability of A375 and MV3 melanoma cells was powerfully inhibited by LH through inducing S phase cell cycle arrest and regulating epithelial-mesenchymal transition (EMT). In NOD/SCID mice model, LH effectively inhibited the xenograft tumor growth and lung metastasis of A375 cells. Further research revealed that LH reduced p21Cip1/WAF1 protein by accelerating its ubiquitination. Importantly, the LH-induced suppression of cell proliferation and metastasis was rescued by p21Cip1/WAF1 overexpression, both in vitro an in vivo. Taken together, LH, which suppresses the proliferation and metastasis of melanoma cells via down-regulating p21Cip1/WAF1, is expected to be developed as an effective medicine for melanoma therapy.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
- Department of Dermatology, The Fifth Hospital of ShijiazhuangShijiazhuang 050000, Hebei, China
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| |
Collapse
|
17
|
Kim JG, Mahmud S, Min JK, Lee YB, Kim H, Kang DC, Park HS, Seong J, Park JB. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to β-catenin and contributes transcriptional regulation of vimentin upon Wnt3A. Redox Biol 2020; 40:101842. [PMID: 33388549 PMCID: PMC7788234 DOI: 10.1016/j.redox.2020.101842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
In the Wnt canonical pathway, Wnt3A has been known to stabilize β-catenin. In the non-canonical Wnt signaling pathway, Wnt is known to activate Rho GTPases. The correlation between canonical and non-canonical pathways by Wnt signaling, however, has not been well elucidated. Here, we identified that Wnt3A promoted superoxide generation, leading to Tyr42 phosphorylation of RhoA through activations of c-Src and Rho-dependent coiled coil kinase 2 (ROCK2) and phosphorylation of p47phox, a component of NADPH oxidase. Wnt3A also induced accumulation of β-catenin along with activations of RhoA and ROCK1. Concurrently, ROCK1 was able to phosphorylate GSK-3β at Ser9, which phosphorylated Src at Ser51 and Ser492 residues, leading to Src inactivation through dephosphorylation of Tyr416 during the late period of Wnt3A treatment. Meanwhile, p-Tyr42 RhoA bound to β-catenin via the N-terminal domain of β-catenin, thereby leading to the nuclear translocation of p-Tyr42 RhoA/β-catenin complex. Notably, p-Tyr42 RhoA as well as β-catenin was associated with the promoter of Vim, leading to increased expression of vimentin. In addition, stomach cancer patients harboring higher expressed p-Tyr42 Rho levels revealed the much poorer survival probability. Therefore, we propose that p-Tyr42 RhoA is crucial for transcriptional regulation of specific target genes in the nucleus by binding to their promoters and involved in tumorigenesis.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea.
| | - Shohel Mahmud
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea; National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea
| | - Hyunbin Kim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong-Chul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang-si, 14066, Republic of Korea
| | - Hwee-Seon Park
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea
| | - Jihye Seong
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science Technology (KIST), Seoul, 02792, Republic of Korea; Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon, Kangwon-Do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Hallym Clinical and Translational Science Institute, Republic of Korea; ELmed Co. Room 3419, Hallym University, Chuncheon, Kangwon-do, 24252, Republic of Korea.
| |
Collapse
|
18
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
19
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
20
|
Han Y, Song C, Zhang T, Zhou Q, Zhang X, Wang J, Xu B, Zhang X, Liu X, Ying X. Wilms' tumor 1 ( WT1) promotes ovarian cancer progression by regulating E-cadherin and ERK1/2 signaling. Cell Cycle 2020; 19:2662-2675. [PMID: 32892698 DOI: 10.1080/15384101.2020.1817666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wilms' tumor 1 (WT1) is reported to play an important role in tumor invasion and metastasis, two hallmarks of ovarian cancer (OC) that influence treatment efficacy and prognosis. However, the specific roles and underlying mechanisms of WT1 in OC have not been fully understood. Here, we investigated the potential function and signaling pathways of WT1 in OC cells. We showed that WT1 was significantly upregulated in human OC tissues and closely associated with OC type, grade and FIGO stage. In cultured cells and xenograft mouse models, WT1 depletion significantly inhibited cell migration and invasion, reversed epithelial-mesenchymal transition (EMT), and prevented metastasis of OC cells. We further demonstrated that WT1 inhibited E-cadherin expression via targeting E-cadherin gene promoter by chromatin immunoprecipitation and luciferase reporter assay. Moreover, ERK1/2 activation was suppressed upon WT1 silencing. Inhibiting ERK1/2 phosphorylation increased E-cadherin expression and suppressed WT1-induced OC cell migration and invasion. Taken together, our study reveals WT1 exerts a tumor-promoting role in OC, enhancing EMT through negative modulation of E-cadherin expression via ERK1/2 signaling. WT1 may represent a novel therapeutic target that may improve the prognosis of OC.
Collapse
Affiliation(s)
- Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu Province, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City , Nantong, Jiangsu Province, China
| | - Chao Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group , Suqian, Jiangsu Province, China
| | - Qianqian Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Xiaoqian Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University , Nanjing, Jiangsu Province, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University , Nanjing, China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
Wang W, Sun J, Wang N, Sun Z, Ma Q, Li J, Zhang M, Xu J. Enterovirus A71 capsid protein VP1 increases blood-brain barrier permeability and virus receptor vimentin on the brain endothelial cells. J Neurovirol 2020; 26:84-94. [PMID: 31512144 PMCID: PMC7040057 DOI: 10.1007/s13365-019-00800-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Enterovirus A71 (EV-A71) is the major cause of severe hand-foot-and-mouth diseases (HFMD), especially encephalitis and other nervous system diseases. EV-A71 capsid protein VP1 mediates virus attachment and is the important virulence factor in the EV-A71pathogenesis. In this study, we explored the roles of VP1 in the permeability of blood-brain barrier (BBB). Sera albumin, Evans blue, and dextran leaked into brain parenchyma of the 1-week-old C57BL/6J mice intracranially injected with VP1 recombinant protein. VP1 also increased the permeability of the brain endothelial cells monolayer, an in vitro BBB model. Tight junction protein claudin-5 was reduced in the brain tissues or brain endothelial cells treated with VP1. In contrast, VP1 increased the expression of virus receptor vimentin, which could be blocked with VP1 neutralization antibody. Vimentin expression in the VP1-treated brain endothelial cells was regulated by TGF-β/Smad-3 and NF-κB signal pathways. Moreover, vimentin over-expression was accompanied with compromised BBB. From these studies, we conclude that EV-A71 virus capsid protein VP1 disrupted BBB and increased virus receptor vimentin, which both may contribute to the virus entrance into brain and EV-A71 CNS infection.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiandong Sun
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wang
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Zhixiao Sun
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Qiyun Ma
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, 210016, China.
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| |
Collapse
|
22
|
Gholamian S, Attarzadeh Hosseini SR, Rashidlamir A, Aghaalinejad H. The effects of interval aerobic training on mesenchymal biomarker gene expression, the rate of tumor volume, and cachexia in mice with breast cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:244-250. [PMID: 32405368 PMCID: PMC7211355 DOI: 10.22038/ijbms.2019.39535.9375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES It seems that regular exercise can have inhibitory effects on the progression of breast cancer. This study, therefore, aimed to investigate the influences of interval aerobic training on mesenchymal biomarker gene expression, muscle cachexia, and tumor volume changes in mice with breast cancer. MATERIALS AND METHODS Thirty-two female Balb/c mice were allocated to four groups: Exercise Tumor Exercise, Rest Tumor Rest (Control), Rest Tumor Exercise, and Exercise Tumor Rest. Interval aerobic training was done 6 weeks before and 4 weeks after tumor induction. Weight test and inverted screen test were carried out as muscle function tests. Data were analyzed using one-way ANOVA and HSD post hoc. RESULTS The results showed a significant decrease in gene expressions of Twist, Vimentin, and TGF-β in Exercise Tumor Exercise group in comparison with the Control group (P<0.05). Remarkable reduction of the rate of tumor volume was also observed in two training groups (Rest Tumor Exercise, Exercise Tumor Exercise) compared with the control group. According to function tests' results, muscle functions were diminished due to cancer, but interval aerobic training can keep muscles in a normally-functioning state in cancer (P<0.05). CONCLUSION Considering final results, a period of interval aerobic training can be used not only as a prevention method, but also help cancer treatment and impede cachexia by tumor volume reduction, decrease mesenchymal biomarker gene expression, and increase muscle strength functions.
Collapse
Affiliation(s)
- Samira Gholamian
- Department of Exercise Physiology (Biochemistry and Metabolism), Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amir Rashidlamir
- Department of Exercise Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Aghaalinejad
- Department of Sports Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 2020; 12:E184. [PMID: 31940801 PMCID: PMC7017239 DOI: 10.3390/cancers12010184] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.
Collapse
Affiliation(s)
- Katerina Strouhalova
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Aneta Gandalovičová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Daniel Rosel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; (K.S.); (A.G.); (J.B.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| |
Collapse
|
24
|
Zhou H, Xu J, Zhang C, Wen Y. Aberrant histone deacetylase 1 expression upregulates vimentin expression via an NF-κB-dependent pathway in hepatocellular carcinoma. Oncol Lett 2019; 18:339-347. [PMID: 31289505 PMCID: PMC6540068 DOI: 10.3892/ol.2019.10309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrantly elevated expression levels of histone deacetylase 1 (HDAC1) and vimentin are closely associated with disease progression in hepatocellular carcinoma (HCC). It was previously demonstrated that knocking down expression of HDAC1 resulted in a concurrent decrease in the expression levels of vimentin. However, a causal link between these two proteins has not yet been demonstrated, to the best of our knowledge. In the present study, the association between HDAC1 and vimentin was investigated using an HDAC1 overexpression platform. HDAC1 and vimentin were significantly increased in HCC cells, and HDAC1 overexpression enhanced vimentin mRNA and protein expression levels in an HDAC1 dose-dependent manner. Subsequently, truncation and mutation of a vimentin promoter demonstrated that HDAC1-induced vimentin expression was dependent on a nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding site in the vimentin promoter sequence. Furthermore, HDAC1 induced vimentin expression by promoting NF-κB translocation between the cytoplasm and the nucleus, as opposed to modulating the total expression level of vimentin directly. The data in the present study demonstrated that HDAC1 is overexpressed in HCC and that HDAC1 may upregulate vimentin expression through the NF-κB signaling pathway, thus demonstrating a causal link between HDAC1 and vimentin in HCC, and may provide valuable information in understanding the pathogenesis of HCC.
Collapse
Affiliation(s)
- Huancheng Zhou
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Jiwei Xu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Caiyun Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Yuanzhang Wen
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
25
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
26
|
Lee Y, Ko D, Min HJ, Kim SB, Ahn HM, Lee Y, Kim S. TMPRSS4 induces invasion and proliferation of prostate cancer cells through induction of Slug and cyclin D1. Oncotarget 2018; 7:50315-50332. [PMID: 27385093 PMCID: PMC5226585 DOI: 10.18632/oncotarget.10382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates tumor cell invasion, migration, and metastasis. We also found that TMPRSS4 activates the transcription factor activating protein-1 (AP-1) to induce cancer cell invasion. Here, we explored TMPRSS4-mediated cellular functions and the underlying mechanisms. TMPRSS4 induced Slug, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, and cyclin D1 through activation of AP-1, composed of c-Jun and activating transcription factor (ATF)-2, which resulted in enhanced invasion and proliferation of PC3 prostate cancer cells. In PC3 cells, not only c-Jun but also Slug was required for TMPRSS4-mediated proliferation and invasion. Interestingly, Slug induced phosphorylation of c-Jun and ATF-2 to activate AP-1 through upregulation of Axl, establishing a positive feedback loop between Slug and AP-1, and thus induced cyclin D1, leading to enhanced proliferation. Using data from The Cancer Genome Atlas, we found that Slug expression positively correlated with that of c-Jun and cyclin D1 in human prostate cancers. Expression of Slug was positively correlated with that of cyclin D1 in various cancer cell lines, whereas expression of other EMT-inducing transcription factors was not. This study demonstrates that TMPRSS4 modulates both invasion and proliferation via Slug and cyclin D1, which is a previously unrecognized pathway that may regulate metastasis and cancer progression.
Collapse
Affiliation(s)
- Yunhee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Dongjoon Ko
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Jin Min
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Sol Bi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Mi Ahn
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
27
|
Liu L, Aleksandrowicz E, Schönsiegel F, Gröner D, Bauer N, Nwaeburu CC, Zhao Z, Gladkich J, Hoppe-Tichy T, Yefenof E, Hackert T, Strobel O, Herr I. Dexamethasone mediates pancreatic cancer progression by glucocorticoid receptor, TGFβ and JNK/AP-1. Cell Death Dis 2017; 8:e3064. [PMID: 28981109 PMCID: PMC5680577 DOI: 10.1038/cddis.2017.455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
Glucocorticoids such as dexamethasone are widely co-prescribed with cytotoxic therapy because of their proapoptotic effects in lymphoid cancer, reduction of inflammation and edema and additional benefits. Concerns about glucocorticoid-induced therapy resistance, enhanced metastasis and reduced survival of patients are largely not considered. We analyzed dexamethasone-induced tumor progression in three established and one primary human pancreatic ductal adenocarcinoma (PDA) cell lines and in PDA tissue from patients and xenografts by FACS and western blot analysis, immunohistochemistry, MTT and wound assay, colony and spheroid formation, EMSA and in vivo tumor growth and metastasis of tumor xenografts on chicken eggs and mice. Dexamethasone in concentrations observed in plasma of patients favored epithelial–mesenchymal transition, self-renewal potential and cancer progression. Ras/JNK signaling, enhanced expression of TGFβ, vimentin, Notch-1 and SOX-2 and the inhibition of E-cadherin occurred. This was confirmed in patient and xenograft tissue, where dexamethasone induced tumor proliferation, gemcitabine resistance and metastasis. Inhibition of each TGFβ receptor-I, glucocorticoid receptor or JNK signaling partially reversed the dexamethasone-mediated effects, suggesting a complex signaling network. These data reveal that dexamethasone mediates progression by membrane effects and binding to glucocorticoid receptor.
Collapse
Affiliation(s)
- Li Liu
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ewa Aleksandrowicz
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Frank Schönsiegel
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Daniel Gröner
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nathalie Bauer
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Clifford C Nwaeburu
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zhefu Zhao
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jury Gladkich
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Eitan Yefenof
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery, University of Heidelberg, Heidelberg, Germany.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Zhang C, Gong P, Ye Y, Zhang L, Chen M, Hu Y, Gu A, Chen S, Wang Y. NF-κB-vimentin is involved in steroidogenesis stimulated by mono-butyl phthalate in primary cultured ovarian granulosa cells. Toxicol In Vitro 2017; 45:25-30. [PMID: 28735033 DOI: 10.1016/j.tiv.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 01/20/2023]
Abstract
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicated the effects of MBP on male steroidogenesis, however, little attention have been paid on the effects of low levels of MBP on female steroidogenesis. This study was aimed to assess steroidogenesis stimulated by low-dose MBP on primary cultured ovarian granulosa cells (mGCs). Ovarian granulosa cells were isolated from ICR female mice. Hormone levels in medium were detected by ELISA, mRNA and protein expressions of vimentin, NF-κB p65 and phosphorylation of NF-κB p65 (p-p65) were assayed by qRT-PCR, western blot and immunohistochemistry, respectively. Besides, confocal immunofluorescence and electrophoretic mobility shift assay (EMSA) were used for detecting vimentin expression and activity of NF-κB p65 binding to the promoter of vimentin, respectively. Progesterone levels, mRNA and protein levels of vimentin and p-p65 in cells were increased significantly in mGCs treated by MBP at 10-10M. Additionally, MBP-induced steroidogenesis was blocked when vimentin protein was knocked down or activity of NF-κB was inhibited. EMSA assay showed that binding activity of NF-κB to the promoter regions of vimentin was boosted after MBP exposure. Accordingly, the results suggested that MBP could up-regulated steroidogenesis through NF-κB-vimentin signal in mGCs.
Collapse
Affiliation(s)
- Chang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yan Ye
- Donghai Town Community Health Service Center, Qidong County, Jiangsu Province 226253, PR China
| | - Lulu Zhang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
29
|
Xu Z, Bian H, Zhang F, Mi R, Wang Q, Lu Y, Zheng Q, Gu J. URI promotes the migration and invasion of human cervical cancer cells potentially via upregulation of vimentin expression. Am J Transl Res 2017; 9:3037-3047. [PMID: 28670391 PMCID: PMC5489903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
URI is known to act as an oncoprotein in several tumors. Our previous studies have shown that URI is associated with the migration process in cervical and gastric cancer cells, but the mechanisms remain to be determined. Given the fact that URI positively regulates vimentin expression, we therefore investigated how URI regulated vimentin expression affects the migration and invasion of cells from two human cervical cancer cell lines HeLa and C33A, which differentially express URI. We have shown that knock-down of URI in HeLa cells using URI siRNA caused decreased vimentin mRNA and protein levels along with attenuated cell motility. Meanwhile, overexpression of URI by transfection of PCMV6-URI in C33A cells resulted in increased vimentin expression and enhanced cell migration and invasion. We have also used TGF-β to induce vimentin expression, which enhanced the cell migration and invasion abilities affected by URI, while inhibition of vimentin by siRNA attenuated URI's effect on cell migration and invasion. In addition, we have performed luciferase reporter and ChIP assays, and the results support that URI indirectly enhances the activity of vimentin promoter. Taken together, our results suggest that URI plays essential roles in the migration and invasion of human cervical cancer cells, possibly via targeting vimentin expression.
Collapse
Affiliation(s)
- Zhonghai Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Huiqin Bian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Fei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Rui Mi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qian Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Yaojuan Lu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Junxia Gu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| |
Collapse
|
30
|
Arko-Boham B, Lomotey JT, Tetteh EN, Tagoe EA, Aryee NA, Owusu EA, Okai I, Blay RM, Clegg-Lamptey JN. Higher serum concentrations of vimentin and DAKP1 are associated with aggressive breast tumour phenotypes in Ghanaian women. Biomark Res 2017; 5:21. [PMID: 28616237 PMCID: PMC5466752 DOI: 10.1186/s40364-017-0100-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer, the most commonly diagnosed cancer among women and leading cause of cancer-related deaths worldwide, exhibits aggressive behavior in indigenous African women evidenced by high histologic grade tumours with low hormone receptor positivity. Aggressive breast cancers grow quickly, easily metastasize and recur and often have unfavourable outcomes. The current study investigated candidate genes that may regulate tumour aggression in Ghanaian women. We hypothesize that increased expression and function of certain genes other than the widely-held view attributing breast cancer aggression in African populations to their younger population age may be responsible for the aggressive nature of tumours. METHODS Employing ELISA, we assayed for vimentin and death-associated protein kinase 1 (DAPK1) from thawed archived (stored at -80 °C) serum samples obtained from 40 clinically confirmed Ghanaian breast cancer patients and 40 apparently healthy controls. Patients' clinical records and tumour parameters matching the samples were retrieved from the database of the hospital. ANOVA was used to compare means of serum protein concentration among groups while Chi-square analysis was used for the categorical data sets with p-value ≤0.05 considered significant. Multiple logistic regression analysis was conducted to determine the association between protein concentration and tumour parameters. RESULTS Of the 80 samples, 27 (33.8%) and 53 (66.2%) were from young (<35 years) and old (≥35 years), respectively. Vimentin and DAPK1 concentration were higher in patients than controls with higher levels in "young" age group than "old" age group. Vimentin concentration was highest in grade 3 tumours followed by grade 2 and 1 but that for DAPK1 was not significant. For vimentin, tumour area strongly correlated with tumour grade (r = 0.696, p < 0.05) but weakly correlated with tumour stage (r = 0.420, p < 0.05). Patient's age correlated with DAPK1 concentration (r = 0.393, p < 0.05). DAPK1 serum levels weakly correlated with cancer duration (r = 0.098, p = 0.27) and tumour size (r = 0.40, p < 0.05). CONCLUSION Serum concentration of Vimentin and DAPK1 are elevated in Ghanaian breast cancer patients. This may be partly responsible for aggressive nature of the disease among the population. Vimentin and DAPK1 should be explored further as potential breast cancer biomarkers in Africans.
Collapse
Affiliation(s)
- Benjamin Arko-Boham
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Justice Tanihu Lomotey
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Nomo Tetteh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ewurama Ampadu Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Isaac Okai
- Department of Anatomy, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Richard Michael Blay
- Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Joe-Nat Clegg-Lamptey
- Department of Surgery, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
| |
Collapse
|
31
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
32
|
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int 2017; 41:706-715. [PMID: 28035727 DOI: 10.1002/cbin.10725] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
The injury of adult skeletal muscle initiates series of well-coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF-β family members is TGF-β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF-β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.
Collapse
Affiliation(s)
- Kamila Delaney
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Paulina Kasprzycka
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| |
Collapse
|
33
|
Zheng X, Xiang L, Liang J, Xie L, Zhang R. Pf-Sp8/9, a novel member of the specificity protein family in Pinctada fucata, potentially participates in biomineralization. J Struct Biol 2016; 196:119-126. [DOI: 10.1016/j.jsb.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
34
|
The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton. Biomed Pharmacother 2016; 83:1132-1140. [DOI: 10.1016/j.biopha.2016.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
|
35
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
36
|
miRNA-200c mediates mono-butyl phthalate-disrupted steroidogenesis by targeting vimentin in Leydig tumor cells and murine adrenocortical tumor cells. Toxicol Lett 2016; 241:95-102. [DOI: 10.1016/j.toxlet.2015.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022]
|
37
|
Smad2/3 Upregulates the Expression of Vimentin and Affects Its Distribution in DBP-Exposed Sertoli Cells. PPAR Res 2015; 2015:489314. [PMID: 26819576 PMCID: PMC4706965 DOI: 10.1155/2015/489314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells (SCs) in the testes provide physical and nutritional support to germ cells. The vimentin cytoskeleton in SCs is disrupted by dibutyl phthalate (DBP), which leads to SCs dysfunction. In a previous study, we found that peroxisome proliferator-activated receptor alpha (PPARα) influenced the distribution of vimentin by affecting its phosphorylation in DBP-exposed SCs. In the present study, we investigated the role of Smad2/3 in regulating the expression of vimentin in DBP-exposed SCs. We hypothesized that Smad2/3 affects the distribution of vimentin by regulating its expression and that there is cross talk between Smad2/3 and PPARα. The real-time PCR and ChIP-qPCR results showed that SB431542 (an inhibitor of Smad2/3) could significantly attenuate the expression of vimentin induced by DBP in SCs. Phosphorylated and soluble vimentin were both downregulated by SB431542 pretreatment. WY14643 (an agonist of PPARα) pretreatment stimulated, while GW6471 (an antagonist of PPARα) inhibited, the activity of Smad2/3; SB431542 pretreatment also inhibited the activity of PPARα, but it did not rescue the DBP-induced collapse in vimentin. Our results suggest that, in addition to promoting the phosphorylation of vimentin, DBP also stimulates the expression of vimentin by activating Smad2/3 in SCs and thereby induces irregular vimentin distribution.
Collapse
|
38
|
Nalluri SM, O'Connor JW, Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial-mesenchymal transition. Cytoskeleton (Hoboken) 2015; 72:557-69. [PMID: 26543012 DOI: 10.1002/cm.21263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process that plays an important role in embryonic development and wound healing and is appropriated during pathological conditions including fibrosis and cancer metastasis. EMT can be initiated by a variety of factors, including transforming growth factor (TGF)-β, and is characterized by loss of epithelial features including cell-cell contacts and apicobasal polarity and acquisition of a motile, mesenchymal phenotype. A key feature of EMT is reorganization of the cytoskeleton and recent studies have elucidated regulation mechanisms governing this process. This review describes changes in gene expression patterns of cytoskeletal associated proteins during TGFβ-induced EMT. It further reports TGFβ-induced intracellular signaling cascades that regulate cytoskeletal reorganization during EMT. Finally, it highlights how changes in cytoskeletal architecture during EMT can regulate gene expression, thus further promoting EMT progression.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
39
|
Takai H, Mezawa M, Choe J, Nakayama Y, Ogata Y. Osteogenic transcription factors and proto-oncogene regulate bone sialoprotein gene transcription. J Oral Sci 2015; 55:209-15. [PMID: 24042587 DOI: 10.2334/josnusd.55.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Runt homeodomain protein 2 (Runx2), distalless 5 (Dlx5) and Smad1 are transcription factors that play critical roles in controlling the differentiation of osteoblasts and mineralization of bone. Proto-oncogene tyrosine-protein kinase, Src, is an enzyme encoded by the Src gene. The normal cellular gene is called cellular-Src (c-Src). Bone sialoprotein (BSP), a protein implicated in the initial mineralization of newly formed bone, is an early phenotypic marker of differentiated osteoblasts. In this study, we used overexpression plasmids with Runx2, Dlx5, Smad1 or c-Src inserts to search for the effects of these transcription factors and proto-oncogene on BSP gene expression using rat osteoblast-like ROS 17/2.8. When we used Runx2, Dlx5 or c-Src overexpression plasmids for the transfection, BSP and Runx2 mRNA levels were increased in ROS 17/2.8 cells. However, overexpression of Smad1 did not induce BSP and Runx2 mRNA. Transient transfection analyses were performed using chimeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene. Transfection of ROS 17/2.8 cells with Runx2, Dlx5 or c-Src overexpression plasmid increased the luciferase activities of the constructs, pLUC3 (-116 to +60), pLUC4 (-425 to +60) and pLUC5 (-801 to +60). However, Smad1 overexpression had no effect on the luciferase activities. These results demonstrate that overexpression of Runx2, Dlx5 or c-Src stimulates BSP transcription, and suggest that Runx2, Dlx5 and c-Src might be crucial transcriptional regulators of mineralization and bone formation.
Collapse
Affiliation(s)
- Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | | | | | | | | |
Collapse
|
40
|
Real-time analysis of epithelial-mesenchymal transition using fluorescent single-domain antibodies. Sci Rep 2015; 5:13402. [PMID: 26292717 PMCID: PMC4544033 DOI: 10.1038/srep13402] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023] Open
Abstract
Vimentin has become an important biomarker for epithelial-mesenchymal transition (EMT), a highly dynamic cellular process involved in the initiation of metastasis and cancer progression. To date there is no approach available to study endogenous vimentin in a physiological context. Here, we describe the selection and targeted modification of novel single-domain antibodies, so-called nanobodies, to trace vimentin in various cellular assays. Most importantly, we generated vimentin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. Following chromobody fluorescence in a cancer-relevant cellular model, we were able for the first time to monitor and quantify dynamic changes of endogenous vimentin upon siRNA-mediated knockdown, induction with TGF-β and modification with Withaferin A by high-content imaging. This versatile approach allows detailed studies of the spatiotemporal organization of vimentin in living cells. It enables the identification of vimentin-modulating compounds, thereby providing the basis to screen for novel therapeutics affecting EMT.
Collapse
|
41
|
Yao W, Sun Q, Huang L, Meng G, Wang H, Jing X, Zhang W. Tetrahydroxystilbene glucoside inhibits TNF-α-induced migration of vascular smooth muscle cells via suppression of vimentin. Can J Physiol Pharmacol 2015; 94:155-160. [PMID: 26583578 DOI: 10.1139/cjpp-2015-0160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration triggered by TNF-α is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) has been proven to exhibit significant anti-atherosclerotic activity. Herein we investigate the inhibitory effect of TSG on TNF-α-induced VSMC migration and explore the underlying mechanisms. TSG pretreatment markedly inhibited TNF-α-induced cell migration. The inhibition of vimentin redistribution and expression was involved in the inhibitory effect of TSG on VSMC migration. The suppression of vimentin expression by shRNA in VSMCs significantly inhibited TNF-α-induced cell migration. Furthermore, TSG inhibited the TNF-α-induced expression of TGFβ1 and TGFβR1, and phosphorylation of TGFβR1 and Smad2/3. TSG also suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG inhibits VSMC migration induced by TNF-α through inhibiting vimentin rearrangement and expression. The interruption of TGFβ/Smad pathway appears to be responsible for the suppression of TSG on vimentin expression.
Collapse
Affiliation(s)
- Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Qinju Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Lei Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Huiming Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Xiang Jing
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China.,Department of Pharmacology, School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, P. R. China
| |
Collapse
|
42
|
Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci U S A 2015; 112:5785-90. [PMID: 25902512 DOI: 10.1073/pnas.1421197112] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanisms used by antisense transcripts to regulate their corresponding sense mRNAs are not fully understood. Herein, we have addressed this issue for the vimentin (VIM) gene, a member of the intermediate filament family involved in cell and tissue integrity that is deregulated in different types of cancer. VIM mRNA levels are positively correlated with the expression of a previously uncharacterized head-to-head antisense transcript, both transcripts being silenced in colon primary tumors concomitant with promoter hypermethylation. Furthermore, antisense transcription promotes formation of an R-loop structure that can be disfavored in vitro and in vivo by ribonuclease H1 overexpression, resulting in VIM down-regulation. Antisense knockdown and R-loop destabilization both result in chromatin compaction around the VIM promoter and a reduction in the binding of transcriptional activators of the NF-κB pathway. These results are the first examples to our knowledge of R-loop-mediated enhancement of gene expression involving head-to-head antisense transcription at a cancer-related locus.
Collapse
|
43
|
Feng XX, Luo J, Liu M, Yan W, Zhou ZZ, Xia YJ, Tu W, Li PY, Feng ZH, Tian DA. Sirtuin 6 promotes transforming growth factor-β1/H2O2/HOCl-mediated enhancement of hepatocellular carcinoma cell tumorigenicity by suppressing cellular senescence. Cancer Sci 2015; 106:559-66. [PMID: 25683165 PMCID: PMC4452156 DOI: 10.1111/cas.12632] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023] Open
Abstract
Sirtuin 6 (SIRT6) can function as a tumor suppressor by suppressing aerobic glycolysis and apoptosis resistance. However, the negative effect of SIRT6 on cellular senescence implies that it may also have the potential to promote tumor development. Here we report that the upregulation of SIRT6 expression was required for transforming growth factor (TGF)-β1 and H2O2/HOCl reactive oxygen species (ROS) to promote the tumorigenicity of hepatocellular carcinoma (HCC) cells. Transforming growth factor-β1/H2O2/HOCl could upregulate SIRT6 expression in HCC cells by inducing the sustained activation of ERK and Smad pathways. Sirtuin 6 in turn abrogated the inducing effect of TGF-β1/H2O2/HOCl on cellular senescence of HCC cells, and was required for the ERK pathway to efficiently suppress the expression of p16 and p21. Sirtuin 6 altered the effect of Smad and p38 MAPK pathways on cellular senescence, and contributed to the inhibitory effect of the ERK pathway on cellular senescence. However, SIRT6 was inefficient in antagonizing the promoting effect of TGF-β1/H2O2/HOCl on aerobic glycolysis and anoikis resistance. Intriguingly, if SIRT6 expression was inhibited, the promoting effect of TGF-β1/H2O2/HOCl on aerobic glycolysis and anoikis resistance was not sufficient to enhance the tumorigenicity of HCC cells. Suppressing the upregulation of SIRT6 enabled TGF-β1/H2O2/HOCl to induce cellular senescence, thereby abrogating the enhancement of HCC cell tumorigenicity by TGF-β1/H2O2/HOCl. These results suggest that SIRT6 is required for TGF-β1/H2O2/HOCl to enhance the tumorigenicity of HCC cells, and that targeting the ERK pathway to suppress the upregulation of SIRT6 might be a potential approach in comprehensive strategies for the therapy of HCC.
Collapse
Affiliation(s)
- Xin-Xia Feng
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Zhen-Zhen Zhou
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Yu-Jia Xia
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Pei-Yuan Li
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| |
Collapse
|
44
|
Yao W, Gu C, Shao H, Meng G, Wang H, Jing X, Zhang W. Tetrahydroxystilbene Glucoside Improves TNF-α-Induced Endothelial Dysfunction: Involvement of TGFβ/Smad Pathway and Inhibition of Vimentin Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:183-98. [DOI: 10.1142/s0192415x15500123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K–Akt–mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Wenjuan Yao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Chengjing Gu
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Haoran Shao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Huiming Wang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Xiang Jing
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| |
Collapse
|
45
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
46
|
Combined phosphoproteomics and bioinformatics strategy in deciphering drug resistant related pathways in triple negative breast cancer. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:390781. [PMID: 25478227 PMCID: PMC4247952 DOI: 10.1155/2014/390781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022]
Abstract
Because of the absence of a clear therapeutic target for triple negative breast cancer (TNBC), conventional chemotherapy is the only available systemic treatment option for these patients. Despite chemotherapy treatment, TNBC patients still have worse prognosis when compared with other breast cancer patients. The study is to investigate unique phosphorylated proteins expressed in chemoresistant TNBC cell lines. In the current study, twelve TNBC cell lines were subjected to drug sensitivity assays against chemotherapy drugs docetaxel, doxorubicin, gemcitabine, and cisplatin. Based on their half maximal inhibitory concentrations, four resistant and two sensitive cell lines were selected for further analysis. The phosphopeptides from these cells were enriched with TiO2 beads and fractionated using strong cation exchange. 1,645 phosphoprotein groups and 9,585 unique phosphopeptides were identified by a high throughput LC-MS/MS system LTQ-Orbitrap. The phosphopeptides were further filtered with Ascore system and 1,340 phosphoprotein groups, 2,760 unique phosphopeptides, and 4,549 unique phosphosites were identified. Our study suggested that differentially phosphorylated Cdk5, PML, AP-1, and HSF-1 might work together to promote vimentin induced epithelial to mesenchymal transition (EMT) in the drug resistant cells. EGFR and HGF were also shown to be involved in this process.
Collapse
|
47
|
Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 2014; 78:35-42. [DOI: 10.1016/j.neuint.2014.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
48
|
Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:62. [PMID: 25084828 PMCID: PMC4237825 DOI: 10.1186/s13046-014-0062-0] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
Abstract
Snail1 is the founding member of the Snail superfamily of zinc-finger transcription factors, which also includes Snail2 (Slug) and Snail3 (Smuc). The superfamily is involved in cell differentiation and survival, two processes central in cancer research. Encoded by the SNAI1 gene located on human chromosome 20q13.2, Snail1 is composed of 264 amino acids and usually acts as a transcriptional repressor. Phosphorylation and nuclear localization of Snail1, governed by PI3K and Wnt signaling pathways crosstalk, are critical in Snail1’s regulation. Snail1 has a pivotal role in the regulation of epithelial-mesenchymal transition (EMT), the process by which epithelial cells acquire a migratory, mesenchymal phenotype, as a result of its repression of E-cadherin. Snail1-induced EMT involves the loss of E-cadherin and claudins with concomitant upregulation of vimentin and fibronectin, among other biomarkers. While essential to normal developmental processes such as gastrulation, EMT is associated with metastasis, the cancer stem cell phenotype, and the regulation of chemo and immune resistance in cancer. Snail1 expression is a common sign of poor prognosis in metastatic cancer, and tumors with elevated Snail1 expression are disproportionately difficult to eradicate by current therapeutic treatments. The significance of Snail1 as a prognostic indicator, its involvement in the regulation of EMT and metastasis, and its roles in both drug and immune resistance point out that Snail1 is an attractive target for tumor growth inhibition and a target for sensitization to cytotoxic drugs.
Collapse
|
49
|
Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 2014; 50:1-6. [PMID: 23980547 DOI: 10.1165/rcmb.2013-0314tr] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is an accumulation of evidence in the literature demonstrating the integral role of vimentin intermediate filaments (IFs) in the progression of lung cancers. Vimentin IF proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT), and the metastatic spread of cancer. Specifically, vimentin IFs have been recognized as an essential component regulating EMT, major signal transduction pathways involved in EMT and tumor progression, cell migration and invasion, the positioning and anchorage of organelles, such as mitochondria, and cell-cell and cell-substrate adhesion. In tumorgenesis, vimentin forms a complex with 14-3-3 and beclin 1 to inhibit autophagy via an AKT-dependent mechanism. Vimentin is a canonical marker of EMT, and recent evidence has shown it to be an important regulator of cellular motility. Transcriptional regulation of vimentin through hypoxia-inducible factor-1 may be a potential driver of EMT. Finally, vimentin regulates 14-3-3 complexes and controls various intracellular signaling and cell cycle control pathways by depleting the availability of free 14-3-3. There are many exciting advances in our understanding of the complex role of vimentin IFs in cancer, pointing to the key role vimentin IFs may play in tumor progression.
Collapse
Affiliation(s)
- Martha E Kidd
- 1 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and
| | | | | |
Collapse
|
50
|
Soond SM, Smith PG, Wahl L, Swingler TE, Clark IM, Hemmings AM, Chantry A. Novel WWP2 ubiquitin ligase isoforms as potential prognostic markers and molecular targets in cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2127-35. [DOI: 10.1016/j.bbadis.2013.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/08/2013] [Accepted: 08/02/2013] [Indexed: 11/27/2022]
|