1
|
Wang G, Wang Y, Wang K, Zhao H, Liu M, Liang W, Li D. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Microbiol Spectr 2023; 11:e0052623. [PMID: 37191530 PMCID: PMC10269628 DOI: 10.1128/spectrum.00526-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Botrytis cinerea, the causal agent of gray mold, is an important plant pathogen causing preharvest and postharvest diseases. Due to the extensive use of commercial fungicides, fungicide-resistant strains have emerged. Natural compounds with antifungal properties are widely present in various kinds of organisms. Perillaldehyde (PA), derived from the plant species Perilla frutescens, is generally recognized as a potent antimicrobial substance and to be safe to humans and the environment. In this study, we demonstrated that PA could significantly inhibit the mycelial growth of B. cinerea and reduced its pathogenicity on tomato leaves. We also found that PA had a significant protective effect on tomato, grape, and strawberry. The antifungal mechanism of PA was investigated by measuring the reactive oxygen species (ROS) accumulation, the intracellular Ca2+ level, the mitochondrial membrane potential, DNA fragmentation, and phosphatidylserine exposure. Further analyses revealed that PA promoted protein ubiquitination and induced autophagic activities and then triggered protein degradation. When the two metacaspase genes, BcMca1 and BcMca2, were knocked out from B. cinerea, all mutants did not exhibit reduced sensitivity to PA. These findings demonstrated that PA could induce metacaspase-independent apoptosis in B. cinerea. Based on our results, we proposed that PA could be used as an effective control agent for gray mold management. IMPORTANCE Botrytis cinerea causes gray mold disease, is considered one of the most important dangerous pathogens worldwide, and leads to severe economic losses worldwide. Due to the lack of resistant varieties of B. cinerea, gray mold control has mainly relied on application of synthetic fungicides. However, long-term and extensive use of synthetic fungicides has increased fungicide resistance in B. cinerea and is harmful to humans and the environment. In this study, we found that perillaldehyde has a significant protective effect on tomato, grape, and strawberry. We further characterized the antifungal mechanism of PA on B. cinerea. Our results indicated that PA induced apoptosis that was independent of metacaspase function.
Collapse
Affiliation(s)
- Guanbo Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yadi Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kunchun Wang
- The Linzi Center for Agricultural and Rural Development, Zibo, China
| | - Haonan Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Delong Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Bresciani FR, Santi L, Beys-da-Silva WO, Berger M, Barcellos VDA, Schripsema J, von Poser GL, Guimarães JA, Vainstein MH. Antifungal activity of Allamanda polyantha seed extract and its iridoids promote morphological alterations in Cryptococcus spp. Arch Pharm (Weinheim) 2020; 353:e2000133. [PMID: 32638423 DOI: 10.1002/ardp.202000133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Cryptococcosis, caused by Cryptococcus spp., is an invasive fungal infection of the central nervous system, associated with high mortality, affecting mainly immunocompromised patients. Due to the development of resistance to the current therapy, there is an urgent need for less toxic and more effective antifungal agents. In this study, we describe the antifungal activity against Cryptococcus spp. of an aqueous seed extract from Allamanda polyantha (ASEAP) and two iridoids, plumieride and plumieridine, isolated from this extract with an antifungal activity. The capsule formation and the morphological alterations were evaluated using fluorescent microscopy. The cytotoxic activity was also investigated. The minimal inhibitory concentration (MIC) values of ASEAP for Cryptococcus gattii were 70 and 36 µg/ml (for the R265 and R272 strains, respectively) and 563 µg/ml for Cryptococcus neoformans H99. ASEAP inhibited C. neoformans H99 capsule formation, an important virulence factor, and decreased the cell body size for both the C. gattii strains. H99 cells also presented morphological alterations, with defects in bud detachment and nuclear fragmentation. Plumieride and plumieridine presented higher MIC values than ASEAP, indicating that other compounds might contribute to antifungal activity and/or that combination of the compounds results in a higher antifungal activity.
Collapse
Affiliation(s)
- Fernanda R Bresciani
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Markus Berger
- Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanessa de A Barcellos
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jan Schripsema
- Metabolomics Group, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gilsane L von Poser
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge A Guimarães
- Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilene H Vainstein
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
4
|
Wani MY, Ahmad A, Aqlan FM, Al-Bogami AS. Azole Based Acetohydrazide Derivatives of Cinnamaldehyde Target and Kill Candida albicans by Causing Cellular Apoptosis. ACS Med Chem Lett 2020; 11:566-574. [PMID: 32292565 PMCID: PMC7153274 DOI: 10.1021/acsmedchemlett.0c00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Opportunistic fungal pathogens including Candida albicans are responsible for the alarming rise in hospital acquired infections and millions of deaths worldwide. The current treatment modalities are not enough to handle this situation, and therefore, new treatment modalities and strategies are desperately needed. In this direction, we synthesized a series of azole based acetohydrazide derivatives of cinnamaldehyde and subjected it to antifungal activity evaluation. Preliminary antifungal activity evaluation revealed tremendous antifungal potential of some of the derivatives against fluconazole susceptible and resistant clinical isolates of Candida albicans. Although all the compounds in the series are structurally similar except for the presence of different substituents on the phenyl ring of the acetohydrazide pendent, they sharply differed in their activity profile. Further mechanism of action studies revealed that these compounds have an apoptotic effect on C. albicans confirmed via Annexin V-FITC staining and TUNEL assay.
Collapse
Affiliation(s)
- Mohmmad Younus Wani
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Faisal Mohammed Aqlan
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Malik MA, Lone SA, Wani MY, Talukdar MIA, Dar OA, Ahmad A, Hashmi AA. S-benzyldithiocarbazate imine coordinated metal complexes kill Candida albicans by causing cellular apoptosis and necrosis. Bioorg Chem 2020; 98:103771. [PMID: 32224354 DOI: 10.1016/j.bioorg.2020.103771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Development of new chemotherapeutic agents and strategies are urgently needed to curb and halt the growing menace caused by hard-to-treat microbes. Coordination of metals to bioactive organic ligands is now considered to be an efficient strategy for delivering bioactive compounds inside the microbial cell membranes. Metal complexes have been effectively used to treat many dreadful diseases were other treatment modalities had failed. Use of metal complexes to treat microbial infections is now conceived to be an alternative and efficient strategy. Towards this, some new homoleptic transition metal complexes, obtained by coordination of metal ions to bioactive S-benzyldithiocarbazate Schiff-base ligands were evaluated for their anti-Candida activity and their potential to disrupt the membrane architecture. The complexes displayed remarkable antifungal activity against a wide spectrum of fluconazole susceptible and resistant Candida albicans isolates, with Ni complex (dtc3) being highly active with minimum inhibitory concentration (MIC) values ranging from 1 to 32 µg/mL. Cell viability assay confirmed the fungicidal activity of these metal complexes, especially the complex dtc3. These metal complexes kill Candida albicans by inducing cellular apoptosis and necrosis thereby causing phosphatidylserine externalization as revealed by Annexin V-FITC and propidium iodide staining assays.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Bioinorganic Chemistry Lab. Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Shabir Ahmad Lone
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Md Ikbal Ahmed Talukdar
- Bioinorganic Chemistry Lab. Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Ovas Ahmad Dar
- Bioinorganic Chemistry Lab. Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Athar Adil Hashmi
- Bioinorganic Chemistry Lab. Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Truong T, Zeng G, Lim TK, Cao T, Pang LM, Lee YM, Lin Q, Wang Y, Seneviratne CJ. Proteomics Analysis ofCandida albicans dnm1Haploid Mutant Unraveled the Association between Mitochondrial Fission and Antifungal Susceptibility. Proteomics 2019; 20:e1900240. [DOI: 10.1002/pmic.201900240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Guisheng Zeng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
| | - Teck Kwang Lim
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Tong Cao
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Li Mei Pang
- National Dental Research Institute SingaporeSinghealth Duke NUS, Singapore 5 Second Hospital Ave Singapore 168938
| | - Yew Mun Lee
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Qingsong Lin
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Yue Wang
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of Singapore 10 Medical Dr Singapore 117597
| | | |
Collapse
|
7
|
Ağuş HH, Yilmaz S, Şengöz CO. Crosstalk between autophagy and apoptosis induced by camphor in Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2019; 43:382-390. [PMID: 31892813 PMCID: PMC6911262 DOI: 10.3906/biy-1908-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Camphor is widely used in pharmacy, the food industry, and cosmetics. In this study, we evaluate inhibitory and cytotoxic effects of camphor in the fission yeast (Schizosaccharomyces pombe), which presents a unicellular model in mechanistic toxicology and cell biology. Low-dose camphor exposure (0.4 mg/mL) activated autophagy, which was shown by GFP-Atg8 dots and transcriptional upregulation of Atg6 (Beclin-1 ortholog). Autophagy was also confirmed by using autophagy-deficient cells, which showed reduction in GFP-Atg8 dot formation. However, high-dose camphor exposure (0.8 mg/mL) caused dramatic cell death ratios, demonstrated by spot and colony-forming assays, even in autophagy-deficient cells. To unravel the underlying mechanism, this time, apoptosis-deficient cells were exposed to low- and high-dose camphor. Apoptosis was also confirmed by acridine orange/ethidium bromide staining. Among yeast apoptosis mediators, Aif1 was found to mediate camphor-induced cell death. In conclusion, differential regulation of autophagy and apoptosis, and switches between them, were found to be dose-dependent. The potential effects of camphor on autophagy and apoptotic cell death and underlying mechanisms were clarified in basic unicellular eukaryotic model, S. pombe.
Collapse
Affiliation(s)
- Hızlan Hıncal Ağuş
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| | - Sedanur Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| | - Cansın Ogeday Şengöz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, İstanbul Yeni Yüzyıl University, İstanbul Turkey
| |
Collapse
|
8
|
Aryamloo P, Asgarian-Omran H, Aslani N, Hossein-Nataj H, Shokohi T, Badali H, Nabili M, Abdollahi Gohar A, Moazeni M. Cellular apoptosis: An alternative mechanism of action for caspofungin against Candida glabrata. Curr Med Mycol 2019; 5:9-15. [PMID: 31321332 PMCID: PMC6626714 DOI: 10.18502/cmm.5.2.1155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Purpose: Although the mechanism of action for echinocandins is known, the physiological mechanisms by which these antifungal agents cause cell death via the classical apoptotic pathways are not well-defined yet. Regarding this, the present study aimed to evaluate the mechanisms of caspofungin-induced Candida glabrata cell death. Materials and Methods: For the purpose of the study, the minimum inhibitory concentration (MIC) of caspofungin against C. glabrata (ATCC 90030) was determined using the broth microdilution reference method (CLSI M27-A2 and M27-S4). The annexin V and propidium iodide staining was performed to determine the way through which caspofungin acts against C. glabrata (i.e., through the induction of apoptosis and/or necrosis). Additionally, the possible effect of caspofungin on inducing the expression of two apoptotic genes, namely MCA1 and NUC, was studied using the real-time polymerase chain reaction assay. Results: According to the obtained MIC value (0.5 µg/mL), C. glabrata, exposed to 0.25, 0.5, and 1 µg/mL of caspofungin, exhibited the features of late apoptosis/necrosis after 18 h of incubation. Furthermore, the use of 0.25, 0.5, and 1 µg/ml caspofungin induced apoptosis (early/late) in 14.67%, 17.04%, and 15.89% of the cells, respectively. The results showed a significant difference between the percentages of early-apoptotic cells at the three concentrations (P<0.05). In addition, the rate of necrosis was significantly greater than that of apoptosis in response to caspofungin. Accordingly, necrosis occurred in 71.26%, 71.26%, and 61.26% of the cells at the caspofungin concentrations of 0.25, 0.5, and 1 µg/mL, respectively (P<0.05). The analysis of the data in the REST software demonstrated a significant increase in the expression of MCA1 and NUC1 genes (P<0.05). Conclusion: As the findings of the present study indicated, caspofungin promoted both necrosis and apoptosis of C. glabrata cells at concentrations higher than or equal to the MIC value.
Collapse
Affiliation(s)
- Parisa Aryamloo
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Aslani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hossein-Nataj
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Nabili
- Department of Medical Laboratory Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | | | - Maryam Moazeni
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Jia C, Zhang J, Yu L, Wang C, Yang Y, Rong X, Xu K, Chu M. Antifungal Activity of Coumarin Against Candida albicans Is Related to Apoptosis. Front Cell Infect Microbiol 2019; 8:445. [PMID: 30662877 PMCID: PMC6328497 DOI: 10.3389/fcimb.2018.00445] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Coumarin (1,2-benzopyrone), an aromatic oxygen-containing heterocyclic compound, has various biological functions. Previous studies have demonstrated that coumarin and its derivatives exhibit antifungal activity against Candida albicans. In this study, we investigated the exact mechanism by which coumarin works against this fungus using Annexin V-FITC/PI double staining, TUNEL assay, and DAPI staining, and found that it induced a series of apoptotic features, including phosphatidylserine (PS) externalization, DNA fragmentation, and nuclear condensation. Moreover, it also induced cytochrome c release from the mitochondria to the cytoplasm and metacaspase activation. Further study revealed that intracellular reactive oxygen species (ROS) levels were increased and mitochondrial functions, such as mitochondrial membrane potential and mitochondrial morphology, were altered after treatment with coumarin. Cytosolic and mitochondrial Ca2+ levels were also found to be elevated. However, pretreatment with ruthenium red (RR), a known mitochondrial Ca2+ channel inhibitor, attenuated coumarin-mediated DNA fragmentation and metacaspase activity, indicating that the coumarin-induced C. albicans apoptosis is associated with mitochondrial Ca2+ influx. Finally, coumarin was found to be low-toxic and effective in prolonging the survival of C. albicans-infected mice. This study highlights the antifungal activity and mechanism of coumarin against C. albicans and provides a potential treatment strategy for C. albicans infection.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Yu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglu Wang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yijia Yang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 2018; 18:4919731. [PMID: 29905792 PMCID: PMC6001894 DOI: 10.1093/femsyr/foy020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed Graz, Graz, 8010, Austria
| | | |
Collapse
|
11
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
12
|
Borowiecki P, Wińska P, Bretner M, Gizińska M, Koronkiewicz M, Staniszewska M. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity. Eur J Med Chem 2018. [PMID: 29533875 DOI: 10.1016/j.ejmech.2018.02.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | | | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| |
Collapse
|
13
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
14
|
Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungusAspergillus flavus. Mycologia 2017; 106:881-8. [PMID: 24895430 DOI: 10.3852/13-292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
15
|
Lee H, Lee DG. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death. Biochimie 2016; 133:80-86. [PMID: 28027901 DOI: 10.1016/j.biochi.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
Bac8c (RIWVIWRR-NH2), an 8-mer peptide modified from amino acids 4-11 of Bac2a, shows broad-spectrum activity against pathogenic bacteria and yeast, and it has been the focus of attention owing to its low cost of synthesis. Although Bac8c is effective against Candida albicans, its mode of action needs to be investigated further. Bac8c causes yeast cell death in a dose-dependent manner by eliciting the production of reactive oxygen species, thereby attenuating the antioxidant defense system. It is also involved in Ca2+ signaling, and produces apoptotic features, such as phosphatidylserine externalization and DNA fragmentation. Bac8c induces cell death by oxidative stress-dependent apoptotic death via disruption of mitochondrial homeostasis and metacaspase activation. This suggests that the concentration of Bac8c is important for the induction of apoptotic death, which is not necessarily accompanied by cell cycle arrest in C. albicans.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model. Sci Rep 2016; 6:35322. [PMID: 27734932 PMCID: PMC5062167 DOI: 10.1038/srep35322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
Valproic acid (VA) is a pharmacologically important histone deacetylase inhibitor that recently garnered attention as an anticancer agent. Since the molecular mechanisms behind the multiple effects of VA are unclear, this study was aimed to unravel the comprehensive cellular processes affected by VA and its molecular targets in vivo using budding yeast as a model organism. Interestingly, genome-wide transcriptome analysis of cells treated with VA showed differential regulation of 30% of the genome. Functional enrichment analysis of VA transcriptome evidenced alteration of various cellular processes including cell cycle, cell wall biogenesis, DNA repair, ion homeostasis, metabolism, stress response, transport and ribosomal biogenesis, etc. Moreover, our genetic screening analysis revealed VA molecular targets belonging to oxidative and osmotic stress, DNA repair, cell wall integrity, and iron homeostasis. Further, our results demonstrated the activation of mitogen-activated protein kinases (MAPKs) Hog1 (p38) and Slt2 (p44/42) upon VA treatment. Our results also exhibited that VA acts through alteration of mitochondrial, ER architecture and functions. Especially, VA effects were neutralized in cells lacking lipid particles. Altogether, our results deciphered the novel molecular insights and mechanistic links to strengthen our knowledge on diverse cellular effects of VA along with its probable therapeutic targets and detoxification approaches.
Collapse
|
17
|
Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. RETRACTED:A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech Ageing Dev 2016; 161:234-246. [PMID: 27507670 DOI: 10.1016/j.mad.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Marie-Ange Teste, Isabelle Léger-Silvestre, Jean M François and Jean-Luc Parrou. Marjorie Petitjean could not be reached.
The corresponding author identified major issues and brought them to the attention of the Journal.
These issues span from significant errors in the Material and Methods section of the article and major flaws in cytometry data analysis to data fabrication on the part of one of the authors.
Given these errors, the retracting authors state that the only responsible course of action would be to retract the article, to respect scientific integrity and maintain the standards and rigor of literature from the retracting authors' group as well as the Journal.
The retracting authors sincerely apologize to the readers and editors.
Collapse
Affiliation(s)
| | - Marie-Ange Teste
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Jean M François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
18
|
Laprade DJ, Brown MS, McCarthy ML, Ritch JJ, Austriaco N. Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1. MICROBIAL CELL 2016; 3:285-292. [PMID: 27683660 PMCID: PMC5036395 DOI: 10.15698/mic2016.07.512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The budding yeast Candida albicans is one of the most
significant fungal pathogens worldwide. It proliferates in two distinct cell
types: blastopores and filaments. Only cells that are able to transform from one
cell type into the other are virulent in mouse disease models. Programmed cell
death is a controlled form of cell suicide that occurs when C.
albicans cells are exposed to fungicidal drugs like amphotericin B
and caspofungin, and to other stressful conditions. We now provide evidence that
suggests that programmed cell death is cell-type specific in yeast: Filamentous
C. albicans cells are more resistant to amphotericin B- and
caspofungin-induced programmed cell death than their blastospore counterparts.
Finally, our genetic data suggests that this phenomenon is mediated by a
protective mechanism involving the yeast metacaspase, MCA1.
Collapse
Affiliation(s)
- David J Laprade
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Melissa S Brown
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Morgan L McCarthy
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - James J Ritch
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| |
Collapse
|
19
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
20
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
21
|
Shirazi F, Kontoyiannis DP, Ibrahim AS. Iron starvation induces apoptosis in Rhizopus oryzae in vitro. Virulence 2016; 6:121-6. [PMID: 25830548 DOI: 10.1080/21505594.2015.1009732] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae.
Collapse
Affiliation(s)
- Fazal Shirazi
- a Department of Infectious Diseases ; Infection Control and Employee Health; The University of Texas M D Anderson Cancer Center ; Houston , TX USA
| | | | | |
Collapse
|
22
|
Shirazi F, Lewis RE, Kontoyiannis DP. Micafungin induced apoptosis in Candida parapsilosis independent of its susceptibility to micafungin. MICROBIAL CELL 2015; 2:445-450. [PMID: 28357269 PMCID: PMC5349207 DOI: 10.15698/mic2015.11.236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We hypothesized that the cell wall inhibitor micafungin (MICA) induces apoptosis in both MICA-susceptible (MICA-S) and MICA-non-susceptible (MICA-NS) Candida parapsilosis. Antifungal activity and apoptosis were analyzed in MICA-S and MICA-NS C. parapsilosis strains following exposure to micafungin for 3 h at 37°C in RPMI 1640 medium. Apoptosis was characterized by detecting phosphatidylserine externalization (PS), plasma membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential changes, adenosine triphosphate (ATP) release, and caspase-like activity. Apoptosis was detected in MICA exposed (0.25 to 1 mg/L) susceptible C. parapsilosis strains and was associated with apoptosis of 20-52% of analyzed cells versus only 5-30% of apoptosis in MICA-NS cells exposed to micafungin (0.5 to 2 mg/L; P = 0.001). The MICA antifungal activity was correlated with apoptotic cells showing increased dihydrorhodamine-123 staining (indicating ROS production), Rh-123 staining (decreased mitochondrial membrane potential), elevated ATP, and increased metacaspase activity. In conclusion, MICA is pro-apoptotic in MICA-S cells, but still exerts apoptotic effects in MICA -NS C. parapsilosis.
Collapse
Affiliation(s)
- Fazal Shirazi
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Russel E Lewis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M D Anderson Cancer Center, Houston, TX, USA. ; Current Address: Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 2015; 115:108-15. [DOI: 10.1016/j.biochi.2015.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
24
|
In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb Pathog 2015; 87:21-9. [PMID: 26169236 DOI: 10.1016/j.micpath.2015.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the antifungal activity of baicalin and its potential mechanism of action against Candida albicans biofilms. The standard techniques including microdilution method and checkerboard assay were employed to evaluate the susceptibilities of baicalin alone and in combination with fluconazole against planktonic and biofilm cells of C. albicans. Transmission electron microscope (TEM), scanning electron microscope (SEM), fluorescent microscope and flow cytometry were used to assess the apoptotic incidences induced by baicalin in biofilm cells. The expressions of four genes (RAS1, CAP1, PDE2 and TPK1) related to Ras-cAMP-PKA pathway were also analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results showed that minimum inhibitory concentration (MIC) and sessile minimum inhibitory concentration (SMIC50) of baicalin were 500 and 2000 μg/mL with fractional inhibitory concentration indexs (FICIs) ranging from 0.28 to 0.75. A series of events related to apoptosis were observed in baicalin-treated C. albicans biofilms, including extensive chromatin condensation along the nuclear envelope, ROS accumulation, MMP reduction, PS externalization, nuclear fragmentation, chromatin condensation, metacaspase activation and Cyt C release. Additionally, the expressions of RAS1 and TPK1 were up-regulated by 3.2 and 2.9 folds respectively, while those of CAP1 and PDE2 were down-regulated by 3.3 and 6.6 folds respectively after exposure to baicalin in biofilm cells. In conclusion, baicalin can suppress the development of C. albicans biofilms most likely due to inducing cell death via apoptosis.
Collapse
|
25
|
Adams C, Cazzanelli G, Rasul S, Hitchinson B, Hu Y, Coombes RC, Raguz S, Yagüe E. Apoptosis inhibitor TRIAP1 is a novel effector of drug resistance. Oncol Rep 2015; 34:415-22. [PMID: 25998939 DOI: 10.3892/or.2015.3988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
TP53-regulated inhibitor of apoptosis 1 (TRIAP1) is a novel apoptosis inhibitor that binds HSP70 in the cytoplasm and blocks the formation of the apoptosome and caspase-9 activation. TRIAP1 has been shown to be upregulated in many types of cancers; however, its role remains elusive. We determined the TRIAP1 mRNA levels in a panel of human tissues and found its expression to be ubiquitous. Normal breast, as well as non-tumorigenic breast cells, exhibited lower TRIAP1 mRNA levels than breast cancer cells or their drug-resistant derivatives. TRIAP1 is a small, evolutionarily conserved protein that is 76 amino acids long. We found that yeast cells, in which the TRIAP1 homologue was knocked out, had increased sensitivity to doxorubicin. Equally, RNA interference in breast cancer drug-resistant cells demonstrated that downregulation of TRIAP1 impaired cell growth in the presence of doxorubicin. As expected, caspase-9 activation was diminished after overexpression of TRIAP1 in drug-resistant cells. Importantly, stable transfections of a TRIAP1 expression plasmid in CAL51 cells led to a marked increase in the number of doxorubicin-resistant clones, that was abolished when cells expressed hairpins targeting TRIAP1. In addition, we showed that TRIAP1 expression was also triggered by estrogen deprivation in MCF-7 cells. Although both polyclonal and monoclonal antibodies generated for the present study failed to robustly detect TRIAP1, we demonstrated that TRIAP1 represents a novel marker for drug resistance in breast cancer cells and it may be used in the stratification of breast cancer patients once a suitable antibody has been developed. Equally, these studies open potential drug development strategies for blocking TRIAP1 activity and avoiding drug resistance.
Collapse
Affiliation(s)
- Caroline Adams
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Giulia Cazzanelli
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Sabeena Rasul
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Ben Hitchinson
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Yunhui Hu
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - R Charles Coombes
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Selina Raguz
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Ernesto Yagüe
- Cancer Research Centre, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
26
|
Kanani A, Zaini F, Kordbacheh P, Falahati M, Rezaie S, Daie R, Farahyar S, Safara M, Fateh R, Faghihloo E, Fattahi A, Heidari M. Identification of Azole Resistance Markers in Clinical Isolates of Candida tropicalis Using cDNA-AFLP Method. J Clin Lab Anal 2015; 30:266-72. [PMID: 25873256 DOI: 10.1002/jcla.21847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Global reports have highlighted the increasing prevalence of Candida tropicalis infections as well as organism(') s drug resistance. This study aimed at identifying azole resistance markers in clinical isolates of C. tropicalis, which will be a great resource for developing new drugs. METHODS Two susceptible and resistant isolates of C. tropicalis were recovered from an epidemiological investigation of candidiasis in immunocompromised patients. C. tropicalis ATCC 750 was used as reference strain. Antifungal susceptibility to fluconazole and itraconazole was determined using Clinical and Laboratory Standards Institute (CLSI) method. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology and real-time reverse-transcriptase (RT) PCR were used for identification of potential genes involved in azole resistance of C. tropicalis clinical isolates. RESULTS Five genes encoding the following enzymes were identified as superoxide dismutase (SOD) implicated in antioxidant defense, ornithine aminotransferase (OAT), acetyl ornithine aminotransferase (ACOAT), adenosylmethionine-8-amino-7-oxononanoate aminotransferase (DAPA AT), and 4-aminobutyrate aminotransferase (ABAT)-belonging to pyridoxal phosphate (PLP) dependent enzymes and acting in an important physiological role in many fungal-cell cycles. Real-time RT-PCR confirmed mRNA level of the aforementioned genes. CONCLUSION Our findings showed that factors such as PLP-dependent enzymes and SOD might be implicated in drug resistance in C. tropicalis clinical isolate. Therefore, further studies are required to explore the accurate biological functions of the mentioned genes that would be helpful for effective drug development.
Collapse
Affiliation(s)
- Ali Kanani
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Zaini
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parivash Kordbacheh
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehraban Falahati
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sassan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Daie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Farahyar
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Safara
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Fateh
- Department of Microbiology and Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Ebrahim Faghihloo
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Ocimum sanctum (L.) essential oil and its lead molecules induce apoptosis in Candida albicans. Res Microbiol 2014; 165:411-9. [PMID: 24858938 DOI: 10.1016/j.resmic.2014.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/09/2014] [Indexed: 11/22/2022]
Abstract
Manipulation of endogenous responses during programmed cell death (PCD) in fungi can lead to development of effective therapeutic strategies. In the present study, we evaluated the physiology of cell death in Candida albicans in response to Ocimum sanctum essential oil (OSEO) and its two major constituents - methyl chavicol (MET CHAV) and linalool (LIN) at varying inhibitory concentrations. Apoptotic cell death was studied on the basis of externalization of membrane phosphatidylserine (PS) revealed by annexin-V-FITC labeling, morphological alterations revealed by transmission electron microscopy and DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Exposure of fungal cells to MIC/4 of OSEO, MET CHAV and LIN resulted in morphological features characteristic of apoptosis, while necrosis was observed at higher concentrations. Necrotic cells displayed reduced TUNEL staining and an inability to exclude propidium iodide. In addition, they lacked a defined nucleus and an intact external morphology. Exposed cells were TUNEL-positive, showed chromatin condensation and margination, nuclear envelope separation, nuclear fragmentation, cytoplasmic shrinkage and plasma membrane blebbing. A dose-dependent decrease in cytochrome c oxidase activity was observed with each compound, but the decrease was not comparable to that elicited by H2O2, eliminating the primary involvement of cytochrome c release in apoptosis thus induced. Previously reported data revealed induction of apoptosis at low concentrations as a result of oxidative insult. Studies aimed at identifying other mitochondrial factors activated during this course to mediate apoptosis will further elucidate the mechanism of antifungal action of these natural products.
Collapse
|
28
|
Neto JBA, da Silva CR, Neta MAS, Campos RS, Siebra JT, Silva RAC, Gaspar DM, Magalhães HIF, de Moraes MO, Lobo MDP, Grangeiro TB, Carvalho TSC, Diogo EBT, da Silva Júnior EN, Rodrigues FAR, Cavalcanti BC, Júnior HVN. Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: a special emphasis on mechanisms of action on Candida tropicalis. PLoS One 2014; 9:e93698. [PMID: 24817320 PMCID: PMC4015898 DOI: 10.1371/journal.pone.0093698] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/09/2014] [Indexed: 11/19/2022] Open
Abstract
In recent decades, the incidence of candidemia in tertiary hospitals worldwide has substantially increased. These infections are a major cause of morbidity and mortality; in addition, they prolong hospital stays and raise the costs associated with treatment. Studies have reported a significant increase in infections by non-albicans Candida species, especially C. tropicalis. The number of antifungal drugs on the market is small in comparison to the number of antibacterial agents available. The limited number of treatment options, coupled with the increasing frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. The objective of this study was to evaluate and compare the antifungal activities of three semisynthetic naphthofuranquinone molecules against fluconazole-resistant Candida spp. strains. These results allowed to us to evaluate the antifungal effects of three naphthofuranquinones on fluconazole-resistant C. tropicalis. The toxicity of these compounds was manifested as increased intracellular ROS, which resulted in membrane damage and changes in cell size/granularity, mitochondrial membrane depolarization, and DNA damage (including oxidation and strand breakage). In conclusion, the tested naphthofuranquinones (compounds 1-3) exhibited in vitro cytotoxicity against fluconazole-resistant Candida spp. strains.
Collapse
MESH Headings
- Animals
- Antifungal Agents/chemical synthesis
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Candida/classification
- Candida/drug effects
- Candida/genetics
- Candida tropicalis/drug effects
- Candida tropicalis/genetics
- Candida tropicalis/metabolism
- Cell Line
- Cell Survival/drug effects
- DNA Damage
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Drug Resistance, Fungal/drug effects
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fluconazole/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Microbial Sensitivity Tests
- Models, Chemical
- Molecular Sequence Data
- Molecular Structure
- Naphthoquinones/chemical synthesis
- Naphthoquinones/chemistry
- Naphthoquinones/pharmacology
- Phosphatidylserines
- RNA, Ribosomal, 5.8S/genetics
- Reactive Oxygen Species/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- João B. A. Neto
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cecília R. da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria A. S. Neta
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosana S. Campos
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Janaína T. Siebra
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rose A. C. Silva
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danielle M. Gaspar
- Department of Physiology and Pharmacology, Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hemerson I. F. Magalhães
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pharmaceutical Sciences, Center for Toxicological Assistance, University Federal of Paraíba, Paraíba, Brazil
| | - Manoel O. de Moraes
- Department of Physiology and Pharmacology, Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marina D. P. Lobo
- Department of Biology, ScienceCenter, Molecular Genetics Laboratory, Federal University of Ceará, Ceará, Brazil
| | - Thalles B. Grangeiro
- Department of Biology, ScienceCenter, Molecular Genetics Laboratory, Federal University of Ceará, Ceará, Brazil
| | - Tatiane S. C. Carvalho
- Natural Products Research Nucleus, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilay B. T. Diogo
- Department of Chemistry, Institute of Exact Sciences, Laboratory of Synthetic and Heterocyclic Chemistry, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Eufrânio N. da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Laboratory of Synthetic and Heterocyclic Chemistry, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Felipe A. R. Rodrigues
- Department of Physiology and Pharmacology, Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno C. Cavalcanti
- Department of Pathology and Legal Medicine, School of Medicine, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hélio V. N. Júnior
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Laboratory of Bioprospection and Experiments in Yeast (LABEL), Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
29
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner. Fungal Biol 2014; 118:394-401. [DOI: 10.1016/j.funbio.2014.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 02/02/2023]
|
30
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
31
|
Chin C, Donaghey F, Helming K, McCarthy M, Rogers S, Austriaco N. Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death. MICROBIAL CELL 2014; 1:58-63. [PMID: 28357223 PMCID: PMC5348969 DOI: 10.15698/mic2014.01.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caspofungin was the first member of a new class of antifungals called echinocandins to be approved by a drug regulatory authority. Like the other echinocandins, caspofungin blocks the synthesis of β(1,3)-D-glucan of the fungal cell wall by inhibiting the enzyme, β(1,3)-D-glucan synthase. Loss of β(1,3)-D-glucan leads to osmotic instability and cell death. However, the precise mechanism of cell death associated with the cytotoxicity of caspofungin was unclear. We now provide evidence that Saccharomyces cerevisiae cells cultured in media containing caspofungin manifest the classical hallmarks of programmed cell death (PCD) in yeast, including the generation of reactive oxygen species (ROS), the fragmentation of mitochondria, and the production of DNA strand breaks. Our data also suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Collapse
Affiliation(s)
- Christopher Chin
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: University of Massachusetts School of Medicine, 55 Lake Ave. N., Worcester, MA 01655, U.S.A
| | - Faith Donaghey
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Katherine Helming
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, U.S.A
| | - Morgan McCarthy
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Stephen Rogers
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| |
Collapse
|
32
|
Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 2013; 58:1468-78. [PMID: 24366745 DOI: 10.1128/aac.00651-13] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavonoids are a class of phenolic compounds commonly found in fruits, vegetables, grains, flowers, tea, and wine. They differ in their chemical structures and characteristics. Such compounds show various biological functions and have antioxidant, antimicrobial, anti-inflammatory, and antiapoptotic properties. The aim of this study was to evaluate the in vitro interactions of flavonoids with fluconazole against Candida tropicalis strains resistant to fluconazole, investigating the mechanism of synergism. Three combinations formed by the flavonoids (+)-catechin hydrated, hydrated quercetin, and (-)-epigallocatechin gallate at a fixed concentration with fluconazole were tested. Flavonoids alone had no antifungal activity within the concentration range tested, but when they were used as a cotreatment with fluconazole, there was significant synergistic activity. From this result, we set out to evaluate the possible mechanisms of cell death involved in this synergism. Isolated flavonoids did not induce morphological changes or changes in membrane integrity in the strains tested, but when they were used as a cotreatment with fluconazole, these changes were quite significant. When evaluating mitochondrial damage and the production of reactive oxygen species (ROS) only in the cotreatment, changes were observed. Flavonoids combined with fluconazole were shown to cause a significant increase in the rate of damage and the frequency of DNA damage in the tested strains. The cotreatment also induced an increase in the externalization of phosphatidylserine, an important marker of early apoptosis. It is concluded that flavonoids, when combined with fluconazole, show activity against strains of C. tropicalis resistant to fluconazole, promoting apoptosis by exposure of phosphatidylserine in the plasma membrane and morphological changes, mitochondrial depolarization, intracellular accumulation of ROS, condensation, and DNA fragmentation.
Collapse
|
33
|
Crambescidin-816 acts as a fungicidal with more potency than crambescidin-800 and -830, inducing cell cycle arrest, increased cell size and apoptosis in Saccharomyces cerevisiae. Mar Drugs 2013; 11:4419-34. [PMID: 24217285 PMCID: PMC3853736 DOI: 10.3390/md11114419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
In this paper, we show the effect of crambescidin-816, -800, and -830 on Saccharomyces cerevisiae viability. We determined that, of the three molecules tested, crambescidin-816 was the most potent. Based on this result, we continued by determining the effect of crambescidin-816 on the cell cycle of this yeast. The compound induced cell cycle arrest in G2/M followed by an increase in cell DNA content and size. When the type of cell death was analyzed, we observed that crambescidin-816 induced apoptosis. The antifungal effect indicates that crambescidins, and mostly crambescidin-816, could serve as a lead compound to fight fungal infections.
Collapse
|
34
|
The proapoptotic effect of traditional and novel nonsteroidal anti-inflammatory drugs in mammalian and yeast cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:504230. [PMID: 23983899 PMCID: PMC3747411 DOI: 10.1155/2013/504230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.
Collapse
|
35
|
Kazemzadeh L, Cvijovic M, Petranovic D. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations. Front Physiol 2012; 3:446. [PMID: 23233838 PMCID: PMC3518040 DOI: 10.3389/fphys.2012.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
Collapse
Affiliation(s)
- Laleh Kazemzadeh
- Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden ; Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
| | | | | |
Collapse
|
36
|
(+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 2012; 94:1784-93. [DOI: 10.1016/j.biochi.2012.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/16/2022]
|
37
|
Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 2012; 70:491-502. [PMID: 22851206 DOI: 10.1007/s00280-012-1937-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.
Collapse
|
38
|
Hostetter AA, Osborn MF, DeRose VJ. RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. ACS Chem Biol 2012; 7:218-25. [PMID: 22004017 DOI: 10.1021/cb200279p] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The numerous regulatory roles of cellular RNAs suggest novel potential drug targets, but establishing intracellular drug-RNA interactions is challenging. Cisplatin (cis-diamminedichloridoplatinum(II)) is a leading anticancer drug that forms exchange-inert complexes with nucleic acids, allowing its distribution on cellular RNAs to be followed ex vivo. Although Pt adduct formation on DNA is well-known, a complete characterization of cellular RNA-Pt adducts has not been performed. In this study, the action of cisplatin on S. cerevisiae in minimal media was established with growth curves, clonogenic assays, and tests for apoptotic markers. Despite high toxicity, cisplatin-induced apoptosis in S. cerevisiae was not observed under these conditions. In-cell Pt concentrations and Pt accumulation on poly(A)-mRNA, rRNA, total RNA, and DNA quantified via ICP-MS indicate ∼4- to 20-fold more Pt accumulation in total cellular RNA than in DNA. Interestingly, similar Pt accumulation is observed on rRNA and total RNA, corresponding to one Pt per (14,600 ± 1,500) and (5760 ± 580) nucleotides on total RNA following 100 and 200 μM cisplatin treatments, respectively. Specific Pt adducts mapped by primer extension analysis of a solvent-accessible 18S rRNA helix occur at terminal and internal loop regions and appear as soon as 1 h post-treatment. Pt per nucleotide accumulation on poly(A)-mRNA is 4- to 6-fold lower than on rRNA but could have consequences for low copy-number or highly regulated transcripts. Taken together, these data demonstrate significant accumulation of Pt adducts on cellular RNA species following in cellulo cisplatin treatment. These and other small molecule-RNA interactions could disrupt processes regulated by RNA.
Collapse
Affiliation(s)
- Alethia A. Hostetter
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Maire F. Osborn
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
39
|
Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology (Reading) 2012; 158:166-175. [DOI: 10.1099/mic.0.052670-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Lei Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiao-Wei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Tian Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Pei-Bao Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Cai-Yun Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| |
Collapse
|
40
|
Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 2011; 87:904-9. [PMID: 21521233 PMCID: PMC3139787 DOI: 10.1111/j.1751-1097.2011.00938.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast-like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μM Pc 4 followed by light at 2.0 J cm(-2) reduced cell survival by 4 logs. XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay revealed that Pc 4-PDT impaired fungal metabolic activity, which was confirmed using the FUN-1 (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4-PDT. These data indicate that Pc 4-PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.
Collapse
Affiliation(s)
- Minh Lam
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Skin Diseases Research Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Paul C. Jou
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Ali A. Lattif
- Center for Medical Mycology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Yoojin Lee
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Christi L. Malbasa
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Skin Diseases Research Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Pranab K. Mukherjee
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Nancy L. Oleinick
- Case Comprehensive Cancer Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Department of Radiation Oncology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Mahmoud A. Ghannoum
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Skin Diseases Research Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Department of Dermatology, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Kevin D. Cooper
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Skin Diseases Research Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Department of Dermatology, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Elma D. Baron
- Department of Dermatology, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Case Skin Diseases Research Center, University Hospitals Case Medical Center, 11100 Euclid Avenue, and Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Department of Dermatology, Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Ferreira TC, de Moraes LMP, Campos ÉG. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:408-17. [DOI: 10.1111/j.1567-1364.2011.00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
42
|
Liang RM, Yong XL, Jiang YP, Tan YH, Dai BD, Wang SH, Hu TT, Chen X, Li N, Dong ZH, Huang XC, Chen J, Cao YB, Jiang YY. 2-amino-nonyl-6-methoxyl-tetralin muriate activity against Candida albicans augments endogenous reactive oxygen species production --a microarray analysis study. FEBS J 2011; 278:1075-85. [PMID: 21251230 DOI: 10.1111/j.1742-4658.2011.08021.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida infections have become an increasingly significant problem, mainly because of the widespread nature of Candida and drug resistance. There is an urgent need to develop new classes of drugs for the treatment of opportunistic Candida infections, especially in medically complex patients. Previous studies have confirmed that 2-amino-nonyl-6-methoxyl-tetralin muriate (10b) possesses powerful antifungal activity in vitro against Candia albicans. To clarify the underlying action mechanism, an oligonucleotide microarray study was performed in C. albicans SC5314 without and with 10b treatment. The analytical results showed that energy metabolism-related genes, including glycolysis-related genes (PFK1, CDC19 and HXK2), fermentation-related genes (PDC11, ALD5 and ADH1) and respiratory electron transport chain-related genes (CBP3, COR1 and QCR8), were downregulated significantly. Functional analysis revealed that 10b treatment increased the generation of endogenous reactive oxygen species, and decreased mitochondrial membrane potential, ubiquinone-cytochrome c reductase (complex III) activity and intracellular ATP levels in C. albicans SC5314. Also, addition of the antioxidant ascorbic acid reduced the antifungal activity of 10b significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous reactive oxygen species augmentation might contribute to the antifungal activity of 10b against C. albicans. This information may prove to be useful for the development of new strategies to treat Candida infections.
Collapse
Affiliation(s)
- Rong Mei Liang
- Drug Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kovaleva MV, Sukhanova EI, Trendeleva TA, Popova KM, Zylkova MV, Uralskaya LA, Zvyagilskaya RA. Induction of permeability of the inner membrane of yeast mitochondria. BIOCHEMISTRY (MOSCOW) 2010; 75:297-303. [PMID: 20370607 DOI: 10.1134/s0006297910030053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The current view on apoptosis is given, with a special emphasis placed on apoptosis in yeasts. Induction of a nonspecific permeability transition pore (mPTP) in mammalian and yeast mitochondria is described, particularly in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, which are aerobes possessing the fully competent respiratory chain with all three points of energy conservation and well-structured mitochondria. They were examined for their ability to induce an elevated permeability transition of the inner mitochondrial membrane, being subjected to virtually all conditions known to induce the mPTP in animal mitochondria. Yeast mitochondria do not form Ca2+-dependent pores, neither the classical Ca2+/P(i)-dependent, cyclosporin A-sensitive pore even under de-energization of mitochondria or depletion of the intramitochondrial nucleotide pools, nor a pore induced in mammalian mitochondria upon concerted action of moderate Ca2+ concentrations (in the presence of the Ca2+ ionophore ETH129) and saturated fatty acids. No pore formation was found in yeast mitochondria in the presence of elevated phosphate concentrations at acidic pH values. It is concluded that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.
Collapse
Affiliation(s)
- M V Kovaleva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We studied staurosporine-induced cell death in the filamentous fungus Neurospora crassa. The generation of reactive oxygen species during the process appears to be an important signaling event, since addition of the antioxidant glutathione prevents the effects of staurosporine on fungal growth. Selected mutants with mutations in respiratory chain complex I are extremely sensitive to the drug, stressing the involvement of complex I in programmed cell death. Following this finding, we determined that the complex I-specific inhibitor rotenone used in combination with staurosporine results in a synergistic and specific antifungal activity, likely through a concerted action on intracellular glutathione depletion. Paradoxically, the synergistic antifungal activity of rotenone and staurosporine is observed in N. crassa complex I mutants and in Saccharomyces cerevisiae, which lacks complex I. In addition, it is not observed when other complex I inhibitors are used instead of rotenone. These results indicate that the rotenone effect is independent of complex I inhibition. The combination of rotenone and staurosporine is effective against N. crassa as well as against the common pathogens Aspergillus fumigatus and Candida albicans, pointing to its usefulness as an antifungal agent.
Collapse
|
45
|
Endo K, Mizuguchi M, Harata A, Itoh G, Tanaka K. Nocodazole induces mitotic cell death with apoptotic-like features inSaccharomyces cerevisiae. FEBS Lett 2010; 584:2387-92. [DOI: 10.1016/j.febslet.2010.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
|
46
|
|
47
|
Eisenberg T, Carmona-Gutierrez D, Büttner S, Tavernarakis N, Madeo F. Necrosis in yeast. Apoptosis 2010; 15:257-68. [DOI: 10.1007/s10495-009-0453-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
La Regina G, Sarkar T, Bai R, Edler MC, Saletti R, Coluccia A, Piscitelli F, Minelli L, Gatti V, Mazzoccoli C, Palermo V, Mazzoni C, Falcone C, Scovassi AI, Giansanti V, Campiglia P, Porta A, Maresca B, Hamel E, Brancale A, Novellino E, Silvestri R. New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies. J Med Chem 2009; 52:7512-27. [PMID: 19601594 DOI: 10.1021/jm900016t] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New arylthioindoles along with the corresponding ketone and methylene compounds were potent tubulin assembly inhibitors. As growth inhibitors of MCF-7 cells, sulfur derivatives were superior or sometimes equivalent to the ketones, while methylene derivatives were substantially less effective. Esters 24, 27-29, 36, 39, and 41 showed approximately 50% of inhibition on human HeLa and HCT116/chr3 cells at 0.5 microM, and these compounds inhibited the growth of HEK, M14, and U937 cells with IC(50)'s in the 78-220 nM range. While murine macrophage J744.1 cell growth was significantly less affected (20% at higher concentrations), four other nontransformed cell lines remained sensitive to these esters. The effect of drug treatment on cell morphology was examined by time-lapse microscopy. In a protocol set up to evaluate toxicity on the Saccharomyces cerevisiae BY4741 wild type strain, compounds 24 and 54 strongly reduced cell growth, and 29, 36, and 39 also showed significant inhibition.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl'kova MV, Ural'skaya LA, Popova KM, Saris NEL, Zvyagilskaya RA. Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. J Bioenerg Biomembr 2009; 41:239-49. [PMID: 19609656 DOI: 10.1007/s10863-009-9227-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca(2+) uptake and is differently regulated compared to the mPTP of animal mitochondria.
Collapse
Affiliation(s)
- Mariya V Kovaleva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|