1
|
Chmelová Ľ, Kraeva N, Saura A, Krayzel A, Vieira CS, Ferreira TN, Soares RP, Bučková B, Galan A, Horáková E, Vojtková B, Sádlová J, Malysheva MN, Butenko A, Prokopchuk G, Frolov AO, Lukeš J, Horváth A, Škodová-Sveráková I, Feder D, Yu Kostygov A, Yurchenko V. Intricate balance of dually-localized catalase modulates infectivity of Leptomonas seymouri (Kinetoplastea: Trypanosomatidae). Int J Parasitol 2024; 54:391-400. [PMID: 38663543 DOI: 10.1016/j.ijpara.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Adam Krayzel
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Cecilia Stahl Vieira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Tainá Neves Ferreira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Rodrigo Pedro Soares
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Marina N Malysheva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexander O Frolov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Denise Feder
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil; Universidade Federal Fluminense, Instituto de Biologia, Laboratório de Biologia de Insetos, Niterói, Brazil; Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
2
|
Opperdoes FR, Záhonová K, Škodová-Sveráková I, Bučková B, Chmelová Ľ, Lukeš J, Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 2024; 25:184. [PMID: 38365628 PMCID: PMC10874023 DOI: 10.1186/s12864-024-10094-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
Collapse
Affiliation(s)
- Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
3
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
4
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
5
|
Glycosome heterogeneity in kinetoplastids. Biochem Soc Trans 2021; 49:29-39. [PMID: 33439256 PMCID: PMC7925000 DOI: 10.1042/bst20190517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.
Collapse
|
6
|
Crowe LP, Wilkinson CL, Nicholson KR, Morris MT. Trypanosoma brucei Pex13.2 Is an Accessory Peroxin That Functions in the Import of Peroxisome Targeting Sequence Type 2 Proteins and Localizes to Subdomains of the Glycosome. mSphere 2020; 5:e00744-19. [PMID: 32075879 PMCID: PMC7031615 DOI: 10.1128/msphere.00744-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/30/2020] [Indexed: 01/30/2023] Open
Abstract
Kinetoplastid parasites, including Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, harbor unique organelles known as glycosomes, which are evolutionarily related to peroxisomes. Glycosome/peroxisome biogenesis is mediated by proteins called peroxins that facilitate organelle formation, proliferation, and degradation and import of proteins housed therein. Import of matrix proteins occurs via one of two pathways that are dictated by their peroxisome targeting sequence (PTS). In PTS1 import, a C-terminal tripeptide sequence, most commonly SKL, is recognized by the soluble receptor Pex5. In PTS2 import, a less conserved N-terminal sequence is recognized by Pex7. The soluble receptors deliver their cargo to the import channel consisting minimally of Pex13 and Pex14. While much of the import process is conserved, kinetoplastids are the only organisms to have two Pex13s, Pex13.1 and Pex13.2. It is unclear why trypanosomes require two Pex13s when one is sufficient for most eukaryotes. To interrogate the role of Pex13.2, we have employed biochemical approaches to partially resolve the composition of the Pex13/Pex14 import complexes in T. brucei and characterized glycosome morphology and protein import in Pex13.2-deficient parasites. Here, we show that Pex13.2 is an integral glycosome membrane protein that interacts with Pex13.1 and Pex14. The N terminus of Pex13.2 faces the cytoplasmic side of the membrane, where it can facilitate interactions required for protein import. Two-dimensional gel electrophoresis revealed three glycosome membrane complexes containing combinations of Pex13.1, Pex13.2, and Pex14. The silencing of Pex13.2 resulted in parasites with fewer, larger glycosomes and disrupted glycosome protein import, suggesting the protein is involved in glycosome biogenesis as well as protein import. Furthermore, superresolution microscopy demonstrated that Pex13.2 localizes to discrete foci in the glycosome periphery, indicating that the glycosome periphery is not homogenous.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and a wasting disease called Nagana in livestock. Current treatments are expensive, toxic, and difficult to administer. Because of this, the search for new drug targets is essential. T. brucei has glycosomes that are essential to parasite survival; however, our ability to target them in drug development is hindered by our lack of understanding about how these organelles are formed and maintained. This work forwards our understanding of how the parasite-specific protein Pex13.2 functions in glycosome protein import and lays the foundation for future studies focused on blocking Pex13.2 function, which would be lethal to bloodstream-form parasites that reside in the mammalian bloodstream.
Collapse
Affiliation(s)
- Logan P Crowe
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Christina L Wilkinson
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Kathleen R Nicholson
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Meredith T Morris
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Evolutionary divergent PEX3 is essential for glycosome biogenesis and survival of trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118520. [PMID: 31369765 DOI: 10.1016/j.bbamcr.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasites cause devastating African sleeping sickness, Chagas disease, and Leishmaniasis that affect about 18 million people worldwide. Recently, we showed that the biogenesis of glycosomes could be the "Achilles' heel" of trypanosomatids suitable for the development of new therapies against trypanosomiases. This was shown for inhibitors of the import machinery of matrix proteins, while the distinct machinery for the topogenesis of glycosomal membrane proteins evaded investigation due to the lack of a druggable interface. Here we report on the identification of the highly divergent trypanosomal PEX3, a central component of the transport machinery of peroxisomal membrane proteins and the master regulator of peroxisome biogenesis. The trypanosomatid PEX3 shows very low degree of conservation and its identification was made possible by a combinatory approach identifying of PEX19-interacting proteins and secondary structure homology screening. The trypanosomal PEX3 localizes to glycosomes and directly interacts with the membrane protein import receptor PEX19. RNAi-studies revealed that the PEX3 is essential and that its depletion results in mislocalization of glycosomal proteins to the cytosol and a severe growth defect. Comparison of the parasites and human PEX3-PEX19 interface disclosed differences that might be accessible for drug development. The absolute requirement for biogenesis of glycosomes and its structural distinction from its human counterpart make PEX3 a prime drug target for the development of novel therapies against trypanosomiases. The identification paves the way for future drug development targeting PEX3, and for the analysis of additional partners involved in this crucial step of glycosome biogenesis.
Collapse
|
8
|
Kalel VC, Mäser P, Sattler M, Erdmann R, Popowicz GM. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr Opin Microbiol 2018; 46:116-122. [PMID: 30481613 DOI: 10.1016/j.mib.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Glycosomes evolved as specialized system for glycolysis in trypanosomatids. These organelle rely on protein import to maintain function. A machinery of peroxin (PEX) proteins is responsible for recognition and transport of glycosomal proteins to the organelle. Disruption of PEX-based import system was expected to be a strategy against trypanosomatids. Recently, a proof of this hypothesis has been presented. Here, we review current information about trypanosomatids' glycosomal transport components as targets for new trypanocidal therapies.
Collapse
Affiliation(s)
- Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
9
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
10
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
11
|
Abstract
Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative agents of lethal diseases threatening millions of people around the world. These organisms compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Peroxisome proliferation can occur through growth and division of existing organelles and de novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic requirements of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these findings, it is widely accepted that glycosomes proliferate through growth and division of existing organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been directly demonstrated. Here, we review recent findings that provide support for the existence of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, in the ER of procyclic form T. brucei. In other eukaryotes, peroxins including PEX13 have been found in the ER of cells undergoing de novo biogenesis of peroxisomes. In addition, PEX16 and PEX19 have been characterized in T. brucei, both of which are important for de novo biogenesis in other eukaryotes. Because glycosomes are rapidly remodeled via autophagy during life cycle differentiation, de novo biogenesis could provide a method of restoring glycosome populations following turnover. Together, the findings we summarize provide support for the hypothesis that glycosome proliferation occurs through growth and division of pre-existing organelles and de novo biogenesis of new organelles from the ER and that the level each mechanism contributes is influenced by glucose availability.
Collapse
Affiliation(s)
- Sarah Bauer
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Meredith T. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
12
|
Bauer ST, McQueeney KE, Patel T, Morris MT. Localization of a Trypanosome Peroxin to the Endoplasmic Reticulum. J Eukaryot Microbiol 2016; 64:97-105. [PMID: 27339640 PMCID: PMC5215699 DOI: 10.1111/jeu.12343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Trypanosoma brucei is the causative agent of diseases that affect 30,000–50,000 people annually. Trypanosoma brucei harbors unique organelles named glycosomes that are essential to parasite survival, which requires growth under fluctuating environmental conditions. The mechanisms that govern the biogenesis of these organelles are poorly understood. Glycosomes are evolutionarily related to peroxisomes, which can proliferate de novo from the endoplasmic reticulum or through the growth and division of existing organelles depending on the organism and environmental conditions. The effect of environment on glycosome biogenesis is unknown. Here, we demonstrate that the glycosome membrane protein, TbPex13.1, is localized to glycosomes when cells are cultured under high glucose conditions and to the endoplasmic reticulum in low glucose conditions. This localization in low glucose was dependent on the presence of a C‐terminal tripeptide sequence. Our findings suggest that glycosome biogenesis is influenced by extracellular glucose levels and adds to the growing body of evidence that de novo glycosome biogenesis occurs in trypanosomes. Because the movement of peroxisomal membrane proteins is a hallmark of ER‐dependent peroxisome biogenesis, TbPex13.1 may be a useful marker for the study such processes in trypanosomes.
Collapse
Affiliation(s)
- Sarah T Bauer
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Kelley E McQueeney
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634.,Department of Pharmacology, University of Virginia, 409 Lane Road, Charlottesville, Virginia, 22908
| | - Terral Patel
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
13
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
14
|
The krebs cycle enzyme α-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes. EUKARYOTIC CELL 2014; 14:206-15. [PMID: 25416237 DOI: 10.1128/ec.00214-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei.
Collapse
|
15
|
Haanstra JR, Bakker BM, Michels PA. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol 2014; 198:18-28. [DOI: 10.1016/j.molbiopara.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022]
|
16
|
Gualdrón-López M, Chevalier N, Van Der Smissen P, Courtoy PJ, Rigden DJ, Michels PAM. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3076-3092. [PMID: 23994617 DOI: 10.1016/j.bbamcr.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ∆PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ∆PEX4 mutant.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Nathalie Chevalier
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Paul A M Michels
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium.
| |
Collapse
|
17
|
Environmentally regulated glycosome protein composition in the African trypanosome. EUKARYOTIC CELL 2013; 12:1072-9. [PMID: 23709182 DOI: 10.1128/ec.00086-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.
Collapse
|
18
|
Gualdrón-López M, Michels PA. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei. Biochem Biophys Res Commun 2013; 431:98-103. [DOI: 10.1016/j.bbrc.2012.12.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
19
|
Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology 2012; 140:1-20. [PMID: 22914253 DOI: 10.1017/s0031182012001278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycosomes are specialized peroxisomes found in all kinetoplastid organisms. The organelles are unique in harbouring most enzymes of the glycolytic pathway. Matrix proteins, synthesized in the cytosol, cofactors and metabolites have to be transported across the membrane. Recent research on Trypanosoma brucei has provided insight into how these translocations across the membrane occur, although many details remain to be elucidated. Proteins are imported by a cascade of reactions performed by specialized proteins, called peroxins, in which a cytosolic receptor with bound matrix protein inserts itself in the membrane to deliver its cargo into the organelle and is subsequently retrieved from the glycosome to perform further rounds of import. Bulky solutes, such as cofactors and acyl-CoAs, seem to be translocated by specific transporter molecules, whereas smaller solutes such as glycolytic intermediates probably cross the membrane through pore-forming channels. The presence of such channels is in apparent contradiction with previous results that suggested a low permeability of the glycosomal membrane. We propose 3 possible, not mutually exclusive, solutions for this paradox. Glycosomal glycolytic enzymes have been validated as drug targets against trypanosomatid-borne diseases. We discuss the possible implications of the new data for the design of drugs to be delivered into glycosomes.
Collapse
|
20
|
Verplaetse E, Gualdrón-López M, Chevalier N, Michels PAM. Studies on the organization of the docking complex involved in matrix protein import into glycosomes of Trypanosoma brucei. Biochem Biophys Res Commun 2012; 424:781-5. [PMID: 22809509 DOI: 10.1016/j.bbrc.2012.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Trypanosoma brucei contains peroxisome-like organelles designated glycosomes because they sequester the major part of the glycolytic pathway. Import of proteins into the peroxisomal matrix involves a protein complex associated with the peroxisomal membrane of which PEX13 is a component. Two very different PEX13 isoforms have recently been identified in T. brucei. A striking feature of one of the isoforms, TbPEX13.1, is the presence of a C-terminal type 1 peroxisomal-targeting signal (PTS1), the tripeptide TKL, conserved in its orthologues in all members of the Trypanosomatidae family so far studied, but absent from TbPEX13.2 and the PEX13s in all other organisms. Despite their differences, both TbPEX13s function as part of a docking complex for cytosolic receptors with bound matrix proteins to be imported. We further characterized TbPEX13.1's function in glycosomal matrix-protein import. It provides a frame to anchor another docking complex component, PEX14, to the glycosomal membrane or information to correctly position it within the membrane. To investigate the possible function of the C-terminal TKL, we determined the topology of the C-terminal half of TbPEX13.1 in the membrane and show that its SH3 domain, located immediately adjacent to the PTS1, is at the cytosolic face.
Collapse
Affiliation(s)
- Emilie Verplaetse
- Research Unit for Tropical Diseases, de Duve Institute, Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
21
|
Trypanosomes contain two highly different isoforms of peroxin PEX13 involved in glycosome biogenesis. FEBS Lett 2012; 586:1765-71. [PMID: 22641036 DOI: 10.1016/j.febslet.2012.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 01/01/2023]
Abstract
We previously identified the peroxin PEX13 in Trypanosoma brucei. Although lacking some features considered typical of PEX13s, it appeared functional in the biogenesis of glycosomes, the peroxisome-like organelles of trypanosomatids. Here we report the identification of a very different trypanosomatid PEX13, not containing the commonly encountered PEX13 SH3 domain but having other typical features. It is readily detected with the jackhmmer database search program, but not with PSI-BLAST. This is the first time different PEX13 isoforms are reported in a single organism. We show that this PEX13.2, like the PEX13.1 previously described, is associated with glycosomes and that its depletion by RNA interference affects the biogenesis of the organelles and viability of trypanosomes. The features considered typical of PEX13s are discussed.
Collapse
|
22
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
23
|
Szöor B, Ruberto I, Burchmore R, Matthews KR. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev 2010; 24:1306-16. [PMID: 20551176 DOI: 10.1101/gad.570310] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the mammalian bloodstream, the sleeping sickness parasite Trypanosoma brucei is held poised for transmission by the activity of a tyrosine phosphatase, TbPTP1. This prevents differentiation of the transmissible "stumpy forms" until entry into the tsetse fly, whereupon TbPTP1 is inactivated and major changes in parasite physiology are initiated to allow colonization of the arthropod vector. Using a substrate-trapping approach, we identified the downstream step in this developmental signaling pathway as a DxDxT phosphatase, TbPIP39, which is activated upon tyrosine phosphorylation, and hence is negatively regulated by TbPTP1. In vitro, TbPIP39 promotes the activity of TbPTP1, thereby reinforcing its own repression, this being alleviated by the trypanosome differentiation triggers citrate and cis-aconitate, generating a potentially bistable regulatory switch. Supporting a role in signal transduction, TbPIP39 becomes rapidly tyrosine-phosphorylated during differentiation, and RNAi-mediated transcript ablation in stumpy forms inhibits parasite development. Interestingly, TbPIP39 localizes in glycosomes, peroxisome-like organelles that compartmentalize the trypanosome glycolytic reactions among other enzymatic activities. Our results invoke a phosphatase signaling cascade in which the developmental signal is trafficked to a unique metabolic organelle in the parasite: the glycosome. This is the first characterized environmental signaling pathway targeted directly to a peroxisome-like organelle in any eukaryotic cell.
Collapse
Affiliation(s)
- Balázs Szöor
- Centre for Immunity, Infection, and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol 2010; 77:658-71. [PMID: 20545846 PMCID: PMC2916222 DOI: 10.1111/j.1365-2958.2010.07236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines ((oe)RNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the (oe)RNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|