1
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
2
|
Zou X, Zou D, Li L, Yu R, Li X, Du X, Guo J, Wang K, Liu W. Multi-omics analysis of an in vitro photoaging model and protective effect of umbilical cord mesenchymal stem cell-conditioned medium. Stem Cell Res Ther 2022; 13:435. [PMID: 36056394 PMCID: PMC9438153 DOI: 10.1186/s13287-022-03137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Skin ageing caused by long-term ultraviolet (UV) irradiation is a complex biological process that involves multiple signalling pathways. Stem cell-conditioned media is believed to have anti-ageing effects on the skin. The purpose of this study was to explore the biological effects of UVB irradiation and anti-photoaging effects of human umbilical cord mesenchymal stem cell-conditioned medium (hUC-MSC-CM) on HaCaT cells using multi-omics analysis with a novel cellular photoaging model.
Methods A cellular model of photoaging was constructed by irradiating serum-starved HaCaT cells with 20 mJ/cm2 UVB. Transcriptomics and proteomics analyses were used to explore the biological effects of UVB irradiation on photoaged HaCaT cells. Changes in cell proliferation, apoptosis, and migration, the cell cycle, and expression of senescence genes and proteins were measured to assess the protective effects of hUC-MSC-CM in the cellular photoaging model. Results The results of the multi-omics analysis revealed that UVB irradiation affected various biological functions of cells, including cell proliferation and the cell cycle, and induced a senescence-associated secretory phenotype. hUC-MSC-CM treatment reduced cell apoptosis, inhibited G1 phase arrest in the cell cycle, reduced the production of reactive oxygen species, and promoted cell motility. The qRT-PCR results indicated that MYC, IL-8, FGF-1, and EREG were key genes involved in the anti-photoaging effects of hUC-MSC-CM. The western blotting results demonstrated that C-FOS, C-JUN, TGFβ, p53, FGF-1, and cyclin A2 were key proteins involved in the anti-photoaging effects of hUC-MSC-CM. Conclusion Serum-starved HaCaT cells irradiated with 20 mJ/cm2 UVB were used to generate an innovative cellular photoaging model, and hUC-MSC-CM demonstrates potential as an anti-photoaging treatment for skin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03137-y.
Collapse
Affiliation(s)
- Xiaocang Zou
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.,Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dayang Zou
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Linhao Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Renfeng Yu
- The People's Liberation Army 965 Hospital, JiLin, 132000, China
| | - XianHuang Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xingyue Du
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - JinPeng Guo
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - KeHui Wang
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei Liu
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
3
|
Wang H, Zhang M, Xu X, Hou S, Liu Z, Chen X, Zhang C, Xu H, Wu L, Liu K, Song L. IKKα mediates UVB-induced cell apoptosis by regulating p53 pathway activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112892. [PMID: 34649141 DOI: 10.1016/j.ecoenv.2021.112892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ultraviolet B (UVB) has been demonstrated to induce DNA damage as well as angiogenesis-related photo-damages, which are implicated in a variety of medical problems, including sunburn, photo-aging and skin cancers. However, the molecular mechanism related to UVB-induced photo-injuries remained fully elucidated. Here we revealed that one of the catalytic subunits of the IKK complex, IKKα, played a critical role in mediating UVB-induced apoptotic responses in two kinds of UVB sensitive cells, human keratinocyte (HaCat) and mouse embryonic fibroblasts (MEFs). This function of IKKα was unrelated to NF-κB activity, but was delivered by inducing phosphorylation and acetylation of p53 and upregulating the expression of the pro-apoptotic p53 target gene, PERP. Although IKKα kinase activity was required for mediating post-translational modifications and transactivation of 53 and PERP induction, IKKα did not show direct binding ability toward p53. Instead, IKKα could interact with CHK1, the protein kinase leading to p53 phosphorylation, and trigger CHK1 activation and CHK1/p53 complex formation. At the same time, IKKα could also interact with p300 and CBP, the acetyltransferases responsible for p53 acetylation, and trigger p300/CBP activation and p300/p53 or CBP/p53 complex formation under UVB exposure. Taken together, we have identified a novel NF-κB-independent role of IKKα in mediating UVB-induced apoptosis by regulating p53 pathway activation. Targeting IKKα/p53/PERP pathway might be helpful to prevent skin photo-damages induced by sunlight.
Collapse
Affiliation(s)
- Hongli Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng 475004, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Xiuduan Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Zhihui Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, China
| | - Xuejiao Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng 475004, China
| | - Huan Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Lin Wu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, 81 Meishan Road, Hefei 230032, China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang 473007, China; School of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
4
|
Xu X, Zhang C, Xu H, Wu L, Hu M, Song L. Autophagic feedback-mediated degradation of IKKα requires CHK1- and p300/CBP-dependent acetylation of p53. J Cell Sci 2020; 133:jcs246868. [PMID: 33097607 DOI: 10.1242/jcs.246868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
In our previous report, we demonstrated that one of the catalytic subunits of the IκB kinase (IKK) complex, IKKα (encoded by CHUK), performs an NF-κB-independent cytoprotective role in human hepatoma cells under the treatment of the anti-tumor therapeutic reagent arsenite. IKKα triggers its own degradation, as a feedback loop, by activating p53-dependent autophagy, and therefore contributes substantially to hepatoma cell apoptosis induced by arsenite. Interestingly, IKKα is unable to interact with p53 directly but plays a critical role in mediating p53 phosphorylation (at Ser15) by promoting CHK1 activation and CHK1-p53 complex formation. In the current study, we found that p53 acetylation (at Lys373 and/or Lys382) was also critical for the induction of autophagy and the autophagic degradation of IKKα during the arsenite response. Furthermore, IKKα was involved in p53 acetylation through interaction with the acetyltransferases for p53, p300 (also known as EP300) and CBP (also known as CREBBP) (collectively p300/CBP), inducing CHK1-dependent p300/CBP activation and promoting p300-p53 or CBP-p53 complex formation. Therefore, taken together with the previous report, we conclude that both IKKα- and CHK1-dependent p53 phosphorylation and acetylation contribute to mediating selective autophagy feedback degradation of IKKα during the arsenite-induced proapoptotic responses.
Collapse
Affiliation(s)
- Xiuduan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, P. R. China
| | - Huan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| | - Lin Wu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Meiru Hu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| |
Collapse
|
5
|
Sun W, Li S, Yu Y, Jin H, Xie Q, Hua X, Wang S, Tian Z, Zhang H, Jiang G, Huang C, Huang H. MicroRNA-3648 Is Upregulated to Suppress TCF21, Resulting in Promotion of Invasion and Metastasis of Human Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:519-530. [PMID: 31071528 PMCID: PMC6506626 DOI: 10.1016/j.omtn.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Although microRNAs (miRNAs) are well-known for their potential in cancer, the function and mechanisms of miR-3648 have barely been explored in any type of cancer. We show here that miR-3648 is upregulated in human BC tissues in comparison with adjacent non-tumor tissues. Functional studies showed that inhibition of miR-3648 expression in the human invasive BC UMUC3 and T24T cell lines decreased migration and invasion in vitro and suppressed lung metastasis in vivo, whereas miR-3648 overexpression promoted BC cell migration and invasion. A bioinformatics screen and mRNA 3' UTR luciferase reporter assay showed that transcription factor 21 (TCF21) was a direct target of miR-3648, and the results obtained from using a miR-3648 inhibitor revealed that miR-3648 inhibited TCF21 protein expression by reduction of its mRNA stability. Further, Kisspeptin 1 (KISS1) was identified as a TCF21 downstream effector responsible for miR-3648-mediated BC invasion and lung metastasis. Collectively, the present results suggest that miR-3648 is overexpressed and plays an oncogenic role in mediation of BC invasion and metastasis through directing the TCF21/KISS1 axis, revealing miR-3648 as a potential biomarker for BC prognosis and a target for BC therapy.
Collapse
Affiliation(s)
- Wenrui Sun
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Xi'an GaoXin Hospital, Shannxi, Xi'an 710000, China
| | - Shi Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuai Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huxiang Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guosong Jiang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 431 East 25(th) Street, New York, NY 10010, USA.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Hu Y, Jin R, Gao M, Xu H, Zou S, Li X, Xing C, Wang Q, Wang H, Feng J, Hu M, Song L. Transcriptional repression of IKKβ by p53 in arsenite-induced GADD45α accumulation and apoptosis. Oncogene 2019; 38:731-746. [PMID: 30177839 PMCID: PMC6355650 DOI: 10.1038/s41388-018-0478-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/01/2023]
Abstract
Our previous studies revealed that GADD45α is a liable protein, which undergoes MDM2-dependent constitutive ubiquitination and degradation in resting HepG2 hepatoma cells. Arsenite exposure induces ribosomal stress responses mediated by the ribosomal protein S7, which can block MDM2 activity and result in GADD45α accumulation and cell apoptosis. In the present study, we found that one of the catalytic subunits of IκB kinase (IKK), IKKβ, exerted a novel IKKα- and NF-κB-independent function in stabilizing MDM2 and therefore contributed to ubiquitination-dependent degradation of GADD45α in resting HepG2 cells. Arsenite stimulation induced transactivation of p53, which formed a complex with its downstream target, Ets-1, and then synergistically repressed IKKβ transcription, reduced MDM2 stability, and ultimately removed the inhibitory effect of MDM2 on GADD45α induction. In addition, DAPK1 functioned as an upstream protein kinase triggering p53/Ets-1-dependent IKKβ and MDM2 reduction and GADD45α accumulation, thus promoting apoptosis in HepG2 cells. Subsequent studies further revealed that the activation of the DAPK1/p53/Ets-1/IKKβ/MDM2/GADD45α cascade was a common signaling event in mediating apoptosis of diverse cancer cells induced by arsenite and other tumor therapeutic agents. Therefore, we conclude that data in the current study have revealed a novel role for IKKβ in negatively regulating GADD45α protein stability and the contribution of p53-dependent IKKβ reduction to mediating cancer cell apoptosis.
Collapse
Affiliation(s)
- Yongliang Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Dermatology, The 309 Hospital of PLA, 17 Heishanhu Street, Beijing, 100091, P. R. China
| | - Rui Jin
- Department of Tumor Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, 100850, China
| | - Ming Gao
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| | - Huan Xu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Shuxian Zou
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xiaoguang Li
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Shanghai, 200032, P. R. China
| | - Chen Xing
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qiyu Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hongli Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Jiannan Feng
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Meiru Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Lun Song
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China.
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
7
|
Kousa YA, Schutte BC. Toward an orofacial gene regulatory network. Dev Dyn 2015; 245:220-32. [PMID: 26332872 DOI: 10.1002/dvdy.24341] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in interferon regulatory factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude syndrome (1/35,000 live births) and popliteal pterygium syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world's population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (branchio-oculo-facial syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting.
Collapse
Affiliation(s)
- Youssef A Kousa
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge, Ma Y, Wei C, Song L. Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci 2015; 106:1023-32. [PMID: 26041409 PMCID: PMC4556392 DOI: 10.1111/cas.12712] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics.
Collapse
Affiliation(s)
- Qixing Tan
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning, China
| | - Hongli Wang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, China
| | - Yongliang Hu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meiru Hu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of New Drug Screening Center, China Pharmaceutical University, Nanjing, China
| | - Aodengqimuge
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of New Drug Screening Center, China Pharmaceutical University, Nanjing, China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Tumor Hospital, Nanning, China
| | - Lun Song
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Pal HC, Athar M, Elmets CA, Afaq F. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice. Photochem Photobiol 2014; 91:225-34. [PMID: 25169110 DOI: 10.1111/php.12337] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022]
Abstract
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage.
Collapse
Affiliation(s)
- Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | |
Collapse
|
10
|
Dong W, Li Y, Gao M, Hu M, Li X, Mai S, Guo N, Yuan S, Song L. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Res 2011; 40:2940-55. [PMID: 22169952 PMCID: PMC3326327 DOI: 10.1093/nar/gkr1216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage.
Collapse
Affiliation(s)
- Wen Dong
- Department of Pathophysiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
IκB kinase alpha (Ikk-α) gene mutations and IKK-α downregulation have been detected in various human squamous cell carcinomas (SCCs), which are malignancies derived from squamous epithelial cells. These squamous epithelial cells distribute to many organs in the body; however, the epidermis is the only organ mainly composed of stratified squamous epithelial cells, called keratinocytes. SCC is the second most common type of skin cancer. Reducing IKK-α expression promotes tumor initiation, and its loss greatly enhances tumor progression from benign papillomas to malignant carcinomas during chemical skin carcinogenesis in mice. Thus, IKK-α has emerged as a tumor suppressor for SCCs. Furthermore, inducible deletion of IKK-α in the keratinocytes of adult mice causes spontaneous skin papillomas and carcinomas, indicating that IKK-α deletion functions as a tumor initiator as well as a tumor promoter. This article discusses IKK-α biological activities and associated molecular events in skin tumor development, which may provide insight into the diagnosis, treatment, and prevention of human squamous cell carcinomas (SCCs) in the future.
Collapse
Affiliation(s)
- Shuang Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | | | | |
Collapse
|
12
|
Abstract
NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type- and context-specific responses.
Collapse
|
13
|
Inhibitory effects of Vitamin E on UVB-induced apoptosis of chicken embryonic fibroblasts. Cell Biol Int 2011; 35:381-9. [DOI: 10.1042/cbi20090285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|