1
|
Fukuda APM, Camandona VDL, Francisco KJM, Rios-Anjos RM, Lucio do Lago C, Ferreira-Junior JR. Simulated microgravity accelerates aging in Saccharomyces cerevisiae. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:32-40. [PMID: 33612178 DOI: 10.1016/j.lssr.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The human body experiences physiological changes under microgravity environment that phenocopy aging on Earth. These changes include early onset osteoporosis, skeletal muscle atrophy, cardiac dysfunction, and immunosenescence, and such adaptations to the space environment may pose some risk to crewed missions to Mars. To investigate the effect of microgravity on aging, many model organisms have been used such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mice. Herein we report that the budding yeast Saccharomyces cerevisiae show decreased replicative lifespan (RLS) under simulated microgravity in a clinostat. The reduction of yeast lifespan is not a result of decreased tolerance to heat shock or oxidative stress and could be overcome either by deletion of FOB1 or calorie restriction, two known interventions that extend yeast RLS. Deletion of the sirtuin gene SIR2 worsens the simulated microgravity effect on RLS, and together with the fob1Δ mutant phenotype, it suggests that simulated microgravity augments the formation of extrachromosomal rDNA circles, which accumulate in yeast during aging. We also show that the chronological lifespan in minimal medium was not changed when cells were grown in the clinostat. Our data suggest that the reduction in longevity due to simulated microgravity is conserved in yeast, worms, and flies, and these findings may have potential implications for future crewed missions in space, as well as the use of microgravity as a model for human aging.
Collapse
Affiliation(s)
| | | | | | | | - Claudimir Lucio do Lago
- Departamento de Química Fundamental - Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Elhasi T, Blomberg A. Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. MICROBIAL CELL 2019; 6:335-355. [PMID: 31404395 PMCID: PMC6685044 DOI: 10.15698/mic2019.08.686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to sense external mechanical stimuli is vital for all organisms. Integrins are transmembrane receptors that mediate bidirectional signalling between the extracellular matrix (ECM) and the cytoskeleton in animals. Thus, integrins can sense changes in ECM mechanics and can translate these into internal biochemical responses through different signalling pathways. In the model yeast species Saccharomyces cerevisiae there are no proteins with sequence similarity to mammalian integrins. However, we here emphasise that the WSC-type (Wsc1, Wsc2, and Wsc3) and the MID-type (Mid2 and Mtl1) mechanosensors in yeast act as partial functional integrin analogues. Various environmental cues recognised by these mechanosensors are transmitted by a conserved signal transduction cascade commonly referred to as the PKC1-SLT1 cell wall integrity (CWI) pathway. We exemplify the WSC- and MID-type mechanosensors functional analogy to integrins with a number of studies where they resemble the integrins in terms of both mechanistic and molecular features as well as in the overall phenotypic consequences of their activity. In addition, many important components in integrin-dependent signalling in humans are conserved in yeast; for example, Sla1 and Sla2 are homologous to different parts of human talin, and we propose that they together might be functionally similar to talin. We also propose that the yeast cell wall is a prominent cellular feature involved in sensing a number of external factors and subsequently activating different signalling pathways. In a hypothetical model, we propose that nutrient limitations modulate cell wall elasticity, which is sensed by the mechanosensors and results in filamentous growth. We believe that mechanosensing is a somewhat neglected aspect of yeast biology, and we argue that the physiological and molecular consequences of signal transduction initiated at the cell wall deserve more attention.
Collapse
Affiliation(s)
- Tarek Elhasi
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| | - Anders Blomberg
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| |
Collapse
|
3
|
Barrila J, Ott CM, LeBlanc C, Mehta SK, Crabbé A, Stafford P, Pierson DL, Nickerson CA. Spaceflight modulates gene expression in the whole blood of astronauts. NPJ Microgravity 2016; 2:16039. [PMID: 28725744 PMCID: PMC5515525 DOI: 10.1038/npjmgrav.2016.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
Abstract
Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1, HSP27, GPX1, XRCC1, BAG-1, HHR23A, FAP48, and C-FOS. No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - C Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Carly LeBlanc
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | - Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Phillip Stafford
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Duane L Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Cheryl A Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, LA, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Huangfu J, Zhang G, Li J, Li C. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects. Bioengineered 2016; 6:251-5. [PMID: 26038088 DOI: 10.1080/21655979.2015.1056942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.
Collapse
Affiliation(s)
- Jie Huangfu
- a School of Life Science ; Beijing Institute of Technology ; Beijing , China
| | | | | | | |
Collapse
|
5
|
Wong SW, Sun S, Cho M, Lee KKH, Mak AFT. H2O2 Exposure Affects Myotube Stiffness and Actin Filament Polymerization. Ann Biomed Eng 2014; 43:1178-88. [PMID: 25371376 DOI: 10.1007/s10439-014-1178-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 01/24/2023]
Abstract
Skeletal muscles often experience oxidative stress in anaerobic metabolism and ischemia-reperfusion. This paper reports how oxidative stress affects the stiffness of cultured murine myotubes and their actin filaments polymerization dynamics. H2O2 was applied as an extrinsic oxidant to C2C12 myotubes. Atomic force microscopy results showed that short exposures to H2O2 apparently increased the stiffness of myotubes, but that long exposures made the cells softer. The turning point seemed to take place somewhere between 1 and 2 h of H2O2 exposure. We found that the stiffness change was probably due to actin filaments being favored for depolymerization after prolong H2O2 treatments, especially when the exposure duration exceeded 1 h and the exposure concentration reached 1.0 mM. Such depolymerization effect was associated with the down-regulation of thymosin beta 4, as well as the up-regulation of both cofilin2 and profilin1 after prolong H2O2 treatments.
Collapse
Affiliation(s)
- Sing Wan Wong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
6
|
Bradamante S, Barenghi L, Maier JAM. Stem Cells toward the Future: The Space Challenge. Life (Basel) 2014; 4:267-80. [PMID: 25370198 PMCID: PMC4187162 DOI: 10.3390/life4020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Astronauts experience weightlessness-induced bone loss due to an unbalanced process of bone remodeling that involves bone mesenchymal stem cells (bMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of bone MSCs. These live in adult bone marrow niches, are characterized by their self-renewal and multipotent differentiation capacities, and the published data indicate that they may lead to interesting returns in the biomedical/bioengineering fields. This review describes the published findings concerning bMSCs exposed to simulated/real microgravity, mainly concentrating on how mechanosignaling, mechanotransduction and oxygen influence their proliferation, senescence and differentiation. A comprehensive understanding of bMSC behavior in microgravity and their role in preventing bone loss will be essential for entering the future age of long-lasting, manned space exploration.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Livia Barenghi
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
7
|
Crabbé A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, Inglis DO, Searles SC, Nelman-Gonzalez MA, Ott CM, Wilson JW, Pierson DL, Stefanyshyn-Piper HM, Hyman LE, Nickerson CA. Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One 2013; 8:e80677. [PMID: 24324620 PMCID: PMC3851762 DOI: 10.1371/journal.pone.0080677] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Sheila M. Nielsen-Preiss
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | - Christine M. Woolley
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | - Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kent Buchanan
- Department of Biology, Oklahoma City University, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - James McCracken
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Diane O. Inglis
- Department of Genetics, Stanford University Medical School, Stanford, California, United States of America
| | - Stephen C. Searles
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | - James W. Wilson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Duane L. Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | | | - Linda E. Hyman
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Versari S, Longinotti G, Barenghi L, Maier JAM, Bradamante S. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J 2013; 27:4466-75. [PMID: 23913861 DOI: 10.1096/fj.13-229195] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.
Collapse
Affiliation(s)
- Silvia Versari
- 1CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Sun Y, Shuang F, Chen DM, Zhou RB. Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats. Osteoporos Int 2013; 24:969-78. [PMID: 22648000 DOI: 10.1007/s00198-012-2028-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Treatment with molecular hydrogen alleviates microgravity-induced bone loss through abating oxidative stress, restoring osteoblastic differentiation, and suppressing osteoclast differentiation and osteoclastogenesis. INTRODUCTION Recently, it has been suggested that hydrogen gas exerts a therapeutic antioxidant activity by selectively reducing cytotoxic reactive oxygen species (ROS). The aim of the present study was to elucidate whether treatment with molecular hydrogen alleviated bone loss induced by modeled microgravity in rats. METHODS Hindlimb suspension (HLS) and rotary wall vessel bioreactor were used to model microgravity in vivo and in vitro, respectively. Sprague-Dawley rats were exposed to HLS for 6 weeks to induced bone loss and simultaneously administrated with hydrogen water (HW). Then, we investigated the effects of incubation with hydrogen-rich medium (HRM) on MC3T3-E1 and RAW264.7 cells exposed to modeled microgravity. RESULTS Treatment with HW alleviated HLS-induced reduction of bone mineral density, ultimate load, stiffness, and energy in femur and lumbar vertebra. Treatment with HW alleviated HLS-induced augmentation of malondialdehyde content and peroxynitrite content and reduction of total sulfhydryl content in femur and lumbar vertebra. In cultured MC3T3-E1 cells, incubation with HRM inhibited modeled microgravity-induced ROS formation, reduction of osteoblastic differentiation, increase of ratio of receptor activator of nuclear factor kappa B ligand to osteoprotegerin, inducible nitric oxide synthetase upregulation, and Erk1/2 phosphorylation. In cultured RAW264.7, incubation with HRM aggravated modeled microgravity-induced ROS formation, osteoclastic differentiation, and osteoclastogenesis. CONCLUSION Treatment with molecular hydrogen alleviates microgravity-induced bone loss in rats. Molecular hydrogen could thus be envisaged as a nutritional countermeasure for spaceflight but remains to be tested in humans.
Collapse
Affiliation(s)
- Y Sun
- Department of Emergency, The Military General Hospital of Beijing PLA, Beijing 100700, China
| | | | | | | |
Collapse
|
11
|
Zheng R, Deng Y, Chen Y, Fan J, Zhang M, Zhong Y, Zhu R, Wang L. Astragaloside IV Attenuates Complement Membranous Attack Complex Induced Podocyte Injury Through the MAPK Pathway. Phytother Res 2011; 26:892-8. [PMID: 22086717 DOI: 10.1002/ptr.3656] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/12/2011] [Accepted: 08/10/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ikeda R. Possible participation of the Rho/Rho-associated coiled-coil-forming kinase pathway in the cell death of Cryptococcus neoformans caused by Staphylococcus aureus adherence. Microbiol Immunol 2011; 55:552-7. [DOI: 10.1111/j.1348-0421.2011.00356.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|