1
|
Mallik S, Poch D, Burick S, Schlieker C. Protein folding and quality control during nuclear transport. Curr Opin Cell Biol 2024; 90:102407. [PMID: 39142062 DOI: 10.1016/j.ceb.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.
Collapse
Affiliation(s)
- Sunanda Mallik
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Dylan Poch
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Sophia Burick
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Christian Schlieker
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA; Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA.
| |
Collapse
|
2
|
Zheng T, Zilman A. Kinetic cooperativity resolves bidirectional clogging within the nuclear pore complex. Biophys J 2024; 123:1085-1097. [PMID: 38640928 PMCID: PMC11079998 DOI: 10.1016/j.bpj.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
As the main gatekeeper of the nucleocytoplasmic transport in eukaryotic cells, the nuclear pore complex (NPC) faces the daunting task of facilitating the bidirectional transport of a high volume of macromolecular cargoes while ensuring the selectivity, speed, and efficiency of this process. The competition between opposing nuclear import and export fluxes passing through the same channel is expected to pose a major challenge to transport efficiency. It has been suggested that phase separation-like radial segregation of import and export fluxes within the assembly of intrinsically disordered proteins that line the NPC pore could be a mechanism for ensuring efficient bidirectional transport. We examine the impact of radial segregation on the efficiency of bidirectional transport through the NPC using a coarse-grained computational model of the NPC. We find little evidence that radial segregation improves transport efficiency. By contrast, surprisingly, we find that NTR crowding may enhance rather than impair the efficiency of bidirectional transport although it decreases the available space in the pore. We identify mechanisms of this novel crowding-induced transport cooperativity through the self-regulation of cargo density and flux in the pore. These findings explain how the functional architecture of the NPC resolves the problem of efficient bidirectional transport, and provide inspiration for the alleviation of clogging in artificial selective nanopores.
Collapse
Affiliation(s)
- Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Junod SL, Tingey M, Kelich JM, Goryaynov A, Herbine K, Yang W. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 2023; 26:107445. [PMID: 37599825 PMCID: PMC10433129 DOI: 10.1016/j.isci.2023.107445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
We present a study on the nuclear export efficiency and time of pre-ribosomal subunits in live mammalian cells, using high-speed single-molecule tracking and single-molecule fluorescence resonance energy transfer techniques. Our findings reveal that pre-ribosomal particles exhibit significantly higher nuclear export efficiency compared to other large cargos like mRNAs, with around two-thirds of interactions between the pre-60S or pre-40S and the nuclear pore complexes (NPCs) resulting in successful export to the cytoplasm. We also demonstrate that nuclear transport receptor (NTR) chromosomal maintenance 1 (CRM1) plays a crucial role in nuclear export efficiency, with pre-60S and pre-40S particle export efficiency decreasing by 11-17-fold when CRM1 is inhibited. Our results suggest that multiple copies of CRM1 work cooperatively to chaperone pre-ribosomal subunits through the NPC, thus increasing export efficiency and decreasing export time. Significantly, this cooperative NTR mechanism extends beyond pre-ribosomal subunits, as evidenced by the enhanced nucleocytoplasmic transport of proteins.
Collapse
Affiliation(s)
- Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | | | - Karl Herbine
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Chowdhury R, Sau A, Musser SM. Super-resolved 3D tracking of cargo transport through nuclear pore complexes. Nat Cell Biol 2022; 24:112-122. [PMID: 35013558 PMCID: PMC8820391 DOI: 10.1038/s41556-021-00815-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Nuclear pore complexes (NPCs) embedded within the nuclear envelope (NE) mediate rapid, selective, and bidirectional traffic between the cytoplasm and the nucleoplasm. Deciphering the mechanism and dynamics of this process is challenged by the need for high spatial and temporal precision. We report here a multi-color imaging approach that enables direct 3D visualization of cargo transport trajectories relative to a super-resolved octagonal double-ring structure of the NPC scaffold. The success of this approach is enabled by the high positional stability of NPCs within permeabilized cells, as verified by a combined experimental and simulation analysis. Hourglass-shaped translocation conduits for two cargo complexes representing different nuclear transport receptor (NTR) pathways indicates rapid migration through the permeability barrier on or near the NPC scaffold. Binding sites for cargo complexes extend over 100 nm from the pore openings, consistent with a wide distribution of the FG-polypeptides that bind NTRs.
Collapse
Affiliation(s)
- Rajdeep Chowdhury
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, College Station, TX, USA
| | - Abhishek Sau
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, College Station, TX, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
5
|
Ng SC, Güttler T, Görlich D. Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide. Nat Commun 2021; 12:4047. [PMID: 34193851 PMCID: PMC8245513 DOI: 10.1038/s41467-021-24292-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls nucleocytoplasmic transport. It retains inert macromolecules while allowing facilitated passage of importins and exportins, which in turn shuttle cargo into or out of cell nuclei. The barrier can be described as a condensed phase assembled from cohesive FG repeat domains. NPCs contain several distinct FG domains, each comprising variable repeats. Nevertheless, we now found that sequence heterogeneity is no fundamental requirement for barrier function. Instead, we succeeded in engineering a perfectly repeated 12mer GLFG peptide that self-assembles into a barrier of exquisite transport selectivity and fast transport kinetics. This barrier recapitulates RanGTPase-controlled importin- and exportin-mediated cargo transport and thus represents an ultimately simplified experimental model system. An alternative proline-free sequence forms an amyloid FG phase. Finally, we discovered that FG phases stain bright with ‘DNA-specific’ DAPI/ Hoechst probes, and that such dyes allow for a photo-induced block of nuclear transport. The permeability barrier of nuclear pore complexes blocks passage of inert macromolecules but allows rapid, receptor-mediated, and RanGTPase-driven transport of cargoes up to ribosome size. The authors now show that such a barrier can be faithfully recapitulated by an ultimately simplified FG phase assembled solely from a tandemly repeated 12mer GLFG peptide.
Collapse
Affiliation(s)
- Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
6
|
Boeri L, Albani D, Raimondi MT, Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev 2019; 11:817-831. [PMID: 31628607 PMCID: PMC6815268 DOI: 10.1007/s12551-019-00594-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have immune-modulatory and tissue-regenerative properties that make them a suitable and promising tool for cell-based therapy application. Since the bio-chemo-mechanical environment influences MSC fate and behavior, the understanding of the mechanosensors involved in the transduction of mechanical inputs into chemical signals could be pivotal. In this context, the nuclear pore complex is a molecular machinery that is believed to have a key role in force transmission and in nucleocytoplasmic shuttling regulation. To fully understand the nuclear pore complex role and the nucleocytoplasmic transport dynamics, recent advancements in fluorescence microscopy provided the possibility to study passive and facilitated nuclear transports also in mechanically stimulated cell culture conditions. Here, we review the current available methods for the investigation of nucleocytoplasmic shuttling, including photo-perturbation-based approaches, fluorescence correlation spectroscopy, and single-particle tracking techniques. For each method, we analyze the advantages, disadvantages, and technical limitations. Finally, we summarize the recent knowledge on mechanical regulation of nucleocytoplasmic translocation in MSC, the relevant progresses made so far, and the future perspectives in the field.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy.
| |
Collapse
|
7
|
Hamsanathan S, Musser SM. The Tat protein transport system: intriguing questions and conundrums. FEMS Microbiol Lett 2019; 365:5000164. [PMID: 29897510 DOI: 10.1093/femsle/fny123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The Tat machinery catalyzes the transport of folded proteins across the cytoplasmic membrane in bacteria and the thylakoid membrane in plants. Transport occurs only in the presence of an electric field (Δψ) and/or a pH (ΔpH) gradient, and thus, Tat transport is considered to be dependent on the proton motive force (pmf). This presents a fundamental and major challenge, namely, that the Tat system catalyzes the movement of large folded protein cargos across a membrane without collapse of ion gradients. Current models argue that the active translocon assembles de novo for each cargo transported, thus providing an effective gating mechanism to minimize ion leakage. A limited structural understanding of the intermediates occurring during transport and the role of the pmf in stabilizing and/or driving this process have hindered the development of more detailed models. A fundamental question that remains unanswered is whether the pmf is actually 'consumed', providing an energetic driving force for transport, or alternatively, whether its presence is instead necessary to provide the appropriate environment for the translocon components to become active. Including addressing this issue in greater detail, we explore a series of additional questions that challenge current models, and, hopefully, motivate future work.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, 1114 TAMU, College Station, TX 77843, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
8
|
Abstract
The high concentration of cholesterol in the plasma membrane relative to the endomembranes of eukaryotic cells allows the selective permeabilization of the plasma membrane with the glycoside digitonin leaving the intracellular membrane bound organelles intact. In this chapter, we describe the basic method to use digitonin permeabilized cells to reconstitute the transport of proteins containing nuclear localization signals into the nucleus. The assay requires only a target cell line that can be permeabilized with digitonin, a source of soluble transport factors, typically provided by the cytosol fraction of cultured cells, and a cargo protein of interest. No other specialized equipment is required other than a fluorescence microscope. The assay can be used to identify transport factors required to transport specific proteins, to study the regulation of protein transport, or to study nuclear protein transport under different conditions.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, West Building, Room 11-335, 303 E. Chicago Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
10
|
Pulupa J, Rachh M, Tomasini MD, Mincer JS, Simon SM. A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics. J Gen Physiol 2017; 149:951-966. [PMID: 28887410 PMCID: PMC5694938 DOI: 10.1085/jgp.201711769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/27/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
The phenylalanine-glycine–repeat nucleoporins are essential for transport through the nuclear pore complex. Pulupa et al. observe reptation of these nucleoporins on a physiological timescale in coarse-grained computational simulations. The phenylalanine-glycine–repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interior of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.
Collapse
Affiliation(s)
- Joan Pulupa
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Manas Rachh
- Courant Institute of Mathematical Sciences, New York, NY
| | - Michael D Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Joshua S Mincer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY .,Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| |
Collapse
|
11
|
Kubitscheck U, Siebrasse JP. Kinetics of transport through the nuclear pore complex. Semin Cell Dev Biol 2017; 68:18-26. [PMID: 28676422 DOI: 10.1016/j.semcdb.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Single molecule microscopy techniques allow to visualize the translocation of single transport receptors and cargo molecules or particles through nuclear pore complexes. These data indicate that cargo molecule import into the nucleus takes less than 10ms and nuclear export of messenger RNA (mRNA) particles takes 50-350ms, up to several seconds for extremely bulky particles. This review summarizes and discusses experimental results on transport of nuclear transport factor 2 (NTF2), importin β and mRNA particles. Putative regulatory functions of importin β for the NPC transport mechanism and the RNA helicase Dbp5 for mRNA export kinetics are discussed.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany.
| | - Jan-Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Musser SM, Grünwald D. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. J Mol Biol 2016; 428:2091-119. [PMID: 26944195 DOI: 10.1016/j.jmb.2016.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/05/2016] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
Abstract
Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.
Collapse
Affiliation(s)
- Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA.
| | - David Grünwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Maizels Y, Gerlitz G. Shaping of interphase chromosomes by the microtubule network. FEBS J 2015; 282:3500-24. [PMID: 26040675 DOI: 10.1111/febs.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
It is well established that microtubule dynamics play a major role in chromosome condensation and localization during mitosis. During interphase, however, it is assumed that the metazoan nuclear envelope presents a physical barrier, which inhibits interaction between the microtubules located in the cytoplasm and the chromatin fibers located in the nucleus. In recent years, it has become apparent that microtubule dynamics alter chromatin structure and function during interphase as well. Microtubule motor proteins transport several transcription factors and exogenous DNA (such as plasmid DNA) from the cytoplasm to the nucleus. Various soluble microtubule components are able to translocate into the nucleus, where they bind various chromatin elements leading to transcriptional alterations. In addition, microtubules may apply force on the nuclear envelope, which is transmitted into the nucleus, leading to changes in chromatin structure. Thus, microtubule dynamics during interphase may affect chromatin spatial organization, as well as transcription, replication and repair.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| |
Collapse
|
14
|
Schmidt HB, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 2015; 4. [PMID: 25562883 PMCID: PMC4283134 DOI: 10.7554/elife.04251] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic 'FG particles'. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore.
Collapse
Affiliation(s)
- Hermann Broder Schmidt
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Nucleocytoplasmic transport is crucial not only for basic cellular activities but also for the physiological adaptation of cells to various environmental stimuli that affect development, cell-fate determination, or disease development. The basic transport mechanisms have been revealed during the past two decades through the identification and biochemical characterizations of factors mediating the transport, dissecting the transport process and examining the function of nuclear pore complexes (NPCs). In this chapter, we describe methods for a nuclear transport reconstitution assay using digitonin-permeabilized mammalian cells. The transport assay can be generally conducted in the lab without special equipment. The assay system is efficient and significantly contributes to the study of nucleocytoplasmic transport.
Collapse
|
16
|
Structural Mechanism of Nuclear Transport Mediated by Importin β and Flexible Amphiphilic Proteins. Structure 2014; 22:1699-1710. [DOI: 10.1016/j.str.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022]
|
17
|
Occurrence and subcellular distribution of the NADPHX repair system in mammals. Biochem J 2014; 460:49-58. [PMID: 24611804 DOI: 10.1042/bj20131482] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydration of NAD(P)H to NAD(P)HX, which inhibits several dehydrogenases, is corrected by an ATP-dependent dehydratase and an epimerase recently identified as the products of the vertebrate Carkd (carbohydrate kinase domain) and Aibp (apolipoprotein AI-binding protein) genes respectively. The purpose of the present study was to assess the presence of these enzymes in mammalian tissues and determine their subcellular localization. The Carkd gene encodes proteins with a predicted mitochondrial propeptide (mCARKD), a signal peptide (spCARKD) or neither of them (cCARKD). Confocal microscopy analysis of transfected CHO (Chinese-hamster ovary) cells indicated that cCARKD remains in the cytosol, whereas mCARKD and spCARKD are targeted to the mitochondria and the endoplasmic reticulum respectively. Unlike the other two forms, spCARKD is N-glycosylated, supporting its targeting to the endoplasmic reticulum. The Aibp gene encodes two different proteins, which we show to be targeted to the mitochondria (mAIBP) and the cytosol (cAIBP). Quantification of the NAD(P)HX dehydratase and epimerase activities in rat tissues, performed after partial purification, indicated that both enzymes are widely distributed, with total activities of ≈3-10 nmol/min per g of tissue. Liver fractionation by differential centrifugation confirmed the presence of the dehydratase and the epimerase in the cytosol and in mitochondria. These data support the notion that NAD(P)HX repair is extremely widespread.
Collapse
|
18
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
19
|
Tu LC, Fu G, Zilman A, Musser SM. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO J 2013; 32:3220-30. [PMID: 24213245 DOI: 10.1038/emboj.2013.239] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/01/2013] [Indexed: 11/09/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate cargo traffic between the nucleus and the cytoplasm of eukaryotic cells. Nuclear transport receptors (NTRs) carry cargos through NPCs by transiently binding to phenylalanine-glycine (FG) repeats on intrinsically disordered polypeptides decorating the NPCs. Major impediments to understand the transport mechanism are the thousands of FG binding sites on each NPC, whose spatial distribution is unknown, and multiple binding sites per NTR, which leads to multivalent interactions. Using single molecule fluorescence microscopy, we show that multiple NTR molecules are required for efficient transport of a large cargo, while a single NTR promotes binding to the NPC but not transport. Particle trajectories and theoretical modelling reveal a crucial role for multivalent NTR interactions with the FG network and indicate a non-uniform FG repeat distribution. A quantitative model is developed wherein the cytoplasmic side of the pore is characterized by a low effective concentration of free FG repeats and a weak FG-NTR affinity, and the centrally located dense permeability barrier is overcome by multivalent interactions, which provide the affinity necessary to permeate the barrier.
Collapse
Affiliation(s)
- Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
20
|
Mannello F, Ligi D, Magnani M. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev Proteomics 2013; 9:635-48. [PMID: 23256674 DOI: 10.1586/epr.12.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traditional technologies to investigate system biology are limited by the detection of parameters resulting from the averages of large populations of cells, missing cells produced in small numbers, and attempting to uniform the heterogeneity. The advent of proteomics and genomics at a single-cell level has set the basis for an outstanding improvement in analytical technology and data acquisition. It has been well demonstrated that cellular heterogeneity is closely related to numerous stochastic transcriptional events leading to variations in patterns of expression among single genetically identical cells. The new-generation technology of single-cell analysis is able to better characterize a cell's population, identifying and differentiating outlier cells, in order to provide both a single-cell experiment and a corresponding bulk measurement, through the identification, quantification and characterization of all system biology aspects (genomics, transcriptomics, proteomics, metabolomics, degradomics and fluxomics). The movement of omics into single-cell analysis represents a significant and outstanding shift.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo, Via O Ubaldini 7, 61029 Urbino (PU), Italy.
| | | | | |
Collapse
|
21
|
Yang W. Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 2013; 4:166-75. [PMID: 23669120 DOI: 10.4161/nucl.24874] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC), which provides the permeable and selective transport path between the nucleus and cytoplasm of eukaryotic cells, allows both the passive diffusion of small molecules in a signal-independent manner and the transport receptor-facilitated translocation of cargo molecules in a signal-dependent manner. However, the spatial and functional relationships between these two transport pathways, which represent critical information for unraveling the fundamental nucleocytoplasmic transport mechanism, remain in dispute. The direct experimental examination of passive and facilitated transport with a high spatiotemporal resolution under real-time trafficking conditions in native NPCs is still difficult. To address this issue and further define these transport mechanisms, we recently developed single-point edge-excitation sub-diffraction (SPEED) microscopy and a deconvolution algorithm to directly map both passive and facilitated transport routes in three dimensions (3D) in native NPCs. Our findings revealed that passive and facilitated transport occur through spatially distinct transport routes. Signal-independent small molecules exhibit a high probability of passively diffusing through an axial central viscous channel, while transport receptors and their cargo complexes preferentially travel through the periphery, around this central channel, after interacting with phenylalanine-glycine (FG) filaments. Strikingly, these two distinct transport zones are not completely separate either spatially or functionally. Instead, their conformations are closely correlated and simultaneously regulated. In this review, we will specifically highlight a detailed procedure for 3D mapping of passive and facilitated transport routes, demonstrate the correlation between these two distinct pathways, and finally, speculate regarding the regulation of the transport pathways driven by the conformational changes of FG filaments in NPCs.
Collapse
Affiliation(s)
- Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores. Proc Natl Acad Sci U S A 2013; 110:E1584-93. [PMID: 23569239 DOI: 10.1073/pnas.1220610110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.
Collapse
|
23
|
Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Rev Genet 2012; 14:9-22. [DOI: 10.1038/nrg3316] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 2012; 150:738-51. [PMID: 22901806 DOI: 10.1016/j.cell.2012.07.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
Nuclear pore complexes (NPCs) maintain a permeability barrier between the nucleus and the cytoplasm through FG-repeat-containing nucleoporins (Nups). We previously proposed a "selective phase model" in which the FG repeats interact with one another to form a sieve-like barrier that can be locally disrupted by the binding of nuclear transport receptors (NTRs), but not by inert macromolecules, allowing selective passage of NTRs and associated cargo. Here, we provide direct evidence for this model in a physiological context. By using NPCs reconstituted from Xenopus laevis egg extracts, we show that Nup98 is essential for maintaining the permeability barrier. Specifically, the multivalent cohesion between FG repeats is required, including cohesive FG repeats close to the anchorage point to the NPC scaffold. Our data exclude alternative models that are based solely on an interaction between the FG repeats and NTRs and indicate that the barrier is formed by a sieve-like FG hydrogel.
Collapse
|
25
|
Raschbichler V, Lieber D, Bailer SM. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins. Traffic 2012; 13:1326-34. [PMID: 22708827 DOI: 10.1111/j.1600-0854.2012.01389.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/01/2022]
Abstract
Transport of proteins between cytoplasm and nucleus is mediated by transport factors of the importin α- and β-families and occurs along a gradient of the small GTPase Ran. To date, in vivo analysis as well as prediction of protein nuclear export remain tedious and difficult. We generated a novel bipartite assay called NEX-TRAP (Nuclear EXport Trapped by RAPamycin) for in vivo analysis of protein nuclear export. The assay is based on the rapamycin-induced dimerization of the modules FRB (FK506-rapamycin (FR)-binding domain) and FKBP (FK506-binding protein-12): a potential nuclear export cargo is fused to FRB, to EYFP for direct visualization as well as to an SV40-derived nuclear localization signal (NLS) for constitutive nuclear import. An integral membrane protein that resides at the trans Golgi network (TGN) is fused to a cytoplasmically exposed FKBP and serves as reporter. EYFP-NLS-FRB fusion proteins with export activity accumulate in the nucleus at steady state but continuously shuttle between nucleus and cytoplasm. Rapamycin-induced dimerization of FRB and FKBP at the TGN traps the shuttling protein outside of the nucleus, making nuclear export permanent. Using several example cargoes, we show that the NEX-TRAP is superior to existing assays owing to its ease of use, its sensitivity and accuracy. Analysis of large numbers of export cargoes is facilitated by recombinational cloning. The NEX-TRAP holds the promise of applicability in automated fluorescence imaging for systematic analysis of nuclear export, thereby improving in silico prediction of nuclear export sequences.
Collapse
Affiliation(s)
- Verena Raschbichler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336, München, Germany
| | | | | |
Collapse
|
26
|
Barteneva NS, Fasler-Kan E, Vorobjev IA. Imaging flow cytometry: coping with heterogeneity in biological systems. J Histochem Cytochem 2012; 60:723-33. [PMID: 22740345 DOI: 10.1369/0022155412453052] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Imaging flow cytometry (IFC) platforms combine features of flow cytometry and fluorescent microscopy with advances in data-processing algorithms. IFC allows multiparametric fluorescent and morphological analysis of thousands of cellular events and has the unique capability of identifying collected events by their real images. IFC allows the analysis of heterogeneous cell populations, where one of the cellular components has low expression (<0.03%) and can be described by Poisson distribution. With the help of IFC, one can address a critical question of statistical analysis of subcellular distribution of proteins in a cell. Here the authors review advantages of IFC in comparison with more traditional technologies, such as Western blotting and flow cytometry (FC), as well as new high-throughput fluorescent microscopy (HTFM), and discuss further developments of this novel analytical technique.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
27
|
Tetenbaum-Novatt J, Hough LE, Mironska R, McKenney AS, Rout MP. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions. Mol Cell Proteomics 2012; 11:31-46. [PMID: 22357553 DOI: 10.1074/mcp.m111.013656] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic transport occurs through the nuclear pore complex (NPC), which in yeast is a ~50 MDa complex consisting of ~30 different proteins. Small molecules can freely exchange through the NPC, but macromolecules larger than ~40 kDa must be aided across by transport factors, most of which belong to a related family of proteins termed karyopherins (Kaps). These transport factors bind to the disordered phenylalanine-glycine (FG) repeat domains in a family of NPC proteins termed FG nups, and this specific binding allows the transport factors to cross the NPC. However, we still know little in terms of the molecular and kinetic details regarding how this binding translates to selective passage of transport factors across the NPC. Here we show that the specific interactions between Kaps and FG nups are strongly modulated by the presence of a cellular milieu whose proteins appear to act as very weak competitors that nevertheless collectively can reduce Kap/FG nup affinities by several orders of magnitude. Without such modulation, the avidities between Kaps and FG nups measured in vitro are too tight to be compatible with the rapid transport kinetics observed in vivo. We modeled the multivalent interactions between the disordered repeat binding sites in the FG nups and multiple cognate binding sites on Kap, showing that they should indeed be sensitive to even weakly binding competitors; the introduction of such competition reduces the availability of these binding sites, dramatically lowering the avidity of their specific interactions and allowing rapid nuclear transport.
Collapse
Affiliation(s)
- Jaclyn Tetenbaum-Novatt
- The Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
28
|
A jumbo problem: mapping the structure and functions of the nuclear pore complex. Curr Opin Cell Biol 2012; 24:92-9. [PMID: 22321828 DOI: 10.1016/j.ceb.2011.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 01/16/2023]
Abstract
Macromolecular assemblies can be intrinsically refractive to classical structural analysis, due to their size, complexity, plasticity and dynamic nature. One such assembly is the nuclear pore complex (NPC). The NPC is formed from ∼450 copies of 30 different proteins, called nucleoporins, and is the sole mediator of exchange between the nucleus and the cytoplasm in eukaryotic cells. Despite significant progress, it has become increasingly clear that new approaches, integrating different sources of structural and functional data, will be needed to understand the functional biology of the NPC. Here, we discuss the latest approaches trying to address this challenge.
Collapse
|
29
|
Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc Natl Acad Sci U S A 2011; 108:E351-8. [PMID: 21690354 DOI: 10.1073/pnas.1104521108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To study transport through the nuclear pore complex, we developed a computational simulation that is based on known structural elements rather than a particular transport model. Results agree with a variety of experimental data including size cutoff for cargo transport with (30-nm diameter) and without (< 10 nm) nuclear localization signals (NLS), macroscopic transport rates (hundreds per second), and single cargo transit times (milliseconds). The recently observed bimodal cargo distribution is predicted, as is the relative invariance of single cargo transit times out to large size (even as macroscopic transport rate decreases). Additional predictions concern the effects of the number of NLS tags, the RanGTP gradient, and phenylalanine-glycine nucleopore protein (FG-Nup) structure, flexibility, and cross-linking. Results are consistent with and elucidate the molecular mechanisms of some existing hypotheses (selective phase, virtual gate, and selective gate models). A model emerges that is a hybrid of a number of preexisting models as well as a Brownian ratchet model, in which a cargo-karyopherin complex remains bound to the same FG-Nups for its entire trajectory through the nuclear pore complex until RanGTP severs the cargo-Nup bonds to effect release into the nucleus.
Collapse
|