1
|
Brett JO, Arjona M, Ikeda M, Quarta M, de Morrée A, Egner IM, Perandini LA, Ishak HD, Goshayeshi A, Benjamin DI, Both P, Rodríguez-Mateo C, Betley MJ, Wyss-Coray T, Rando TA. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat Metab 2020; 2:307-317. [PMID: 32601609 PMCID: PMC7323974 DOI: 10.1038/s42255-020-0190-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFβ signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.
Collapse
Affiliation(s)
- Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Mika Ikeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Antoine de Morrée
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ingrid M Egner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Luiz A Perandini
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Heather D Ishak
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Rodríguez-Mateo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Betley
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Interdepartmental Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Nevoid Basal Cell Carcinoma Syndrome: PTCH1 Mutation Profile and Expression of Genes Involved in the Hedgehog Pathway in Argentinian Patients. Cells 2019; 8:cells8020144. [PMID: 30754660 PMCID: PMC6406887 DOI: 10.3390/cells8020144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/23/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCC), mainly caused by PTCH1 gene mutations. Our current study aimed to establish (1) PTCH1 germinal and somatic mutational status, (2) component and Hedgehog (HH) pathway targets gene expression patterns, and (3) profile variations according to the genetic background in BCC and normal surrounding skin (NSS). We collected 23 blood and 20 BCC patient samples and analyzed the PTCH1 gene using bidirectional sequencing and multiplex ligation-dependent probe amplification. Quantitative PCR was used to determine the mRNA expression levels of PTCH1, SMO, GLI3, and CCND1 in paired samples of BCC and NSS from 20 patients and four non-NBCCS skin controls (C). Our analyses identified 12 germline and five somatic sequence variants in PTCH1. mRNA levels of PTCH1, SMO, and GLI3 were higher in NSS compared to C samples, reaching maximum values in BCC samples (p < 0.05). NSS with PTCH1 germline mutations had modified SMO, PTCH1, and GLI3 mRNA levels compared to samples without mutation (p < 0.01). Two PTCH1 mutations in BCC led to an increase in PTCH1, SMO, and GLI3, and a decrease in CCND1 mRNA levels (p < 0.01 vs. BCC with germline mutation only). These results indicate that besides PTCH1, other genes are responsible for NBCCS and BCC development in a population exposed to high UV radiation. Additionally, the mutational events caused increased expression of HH-related genes, even in phenotypically normal skin.
Collapse
|
3
|
Machado MS, Rosa FD, Lira MC, Urtreger AJ, Rubio MF, Costas MA. The inflammatory cytokine TNF contributes with RAC3-induced malignant transformation. EXCLI JOURNAL 2018; 17:1030-1042. [PMID: 30585274 PMCID: PMC6298201 DOI: 10.17179/excli2018-1759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
RAC3 is a coactivator of steroid receptors and NF-κB. It is usually overexpressed in several tumors, contributes to maintain cancer stem cells and also to induce them when is overexpressed in non-tumoral cells. In this work, we investigated whether the inflammatory cytokine TNF may contribute to the transforming effects of RAC3 overexpression in the non-tumoral HEK293 cell line. The study model included the HEK293 tumoral transformed cell line constitutively overexpressing RAC3 by stable transfection and control non-tumoral cells transfected with an empty vector. The HeLa and T47D tumoral cells that naturally overexpress RAC3 were used as positive control. We found that TNF potentiated RAC3-induced mesenchymal transition, involving an increased E-Cadherin downregulation, Vimentin and SNAIL upregulation and enhanced migratory behavior. Moreover, concerning the molecular mechanisms by which TNF potentiates the RAC3 transforming action, they involve the IKK activation, which in addition induced the β-Catenin transactivation. Our results demonstrate that although RAC3 overexpression could be a signal strong enough to induce cancer stem cells, the inflammatory microenvironment may be playing a key role contributing to the migratory and invasive phenotype required for metastasis and cancer persistence.
Collapse
Affiliation(s)
- Mileni Soares Machado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Francisco D Rosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - María C Lira
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Av. San Martín 5481, C1417DTB Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - María F Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Mónica A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| |
Collapse
|
4
|
Bufadienolides from Venenum Bufonis Inhibit mTOR-Mediated Cyclin D1 and Retinoblastoma Protein Leading to Arrest of Cell Cycle in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3247402. [PMID: 30108651 PMCID: PMC6077658 DOI: 10.1155/2018/3247402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Objective Bufadienolides, the main components in Venenum Bufonis secreted from toads, have been proved to be with significant anticancer activity aside from the positive inotropic action as cardenolides. Here an underlying anticancer mechanism was further elucidated for an injection made from Venenum Bufonis containing nine bufadienolides. Methods One solution reagent and cell cycle analyses were for determining effect of bufadienolides on cancer cells. Western blotting was used for protein expression. Results Bufadienolides inhibit cell proliferation and arrest cells in G1 phase. Bufadienolides also inhibit the mammalian target of rapamycin (mTOR) signaling pathway, which is evidenced by the data that bufadienolides inhibit type I insulin-like growth factor- (IGF-1-) activated phosphorylation of mTOR by a concentration- and time-dependent way, as well as phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). Subsequent results indicated that cyclin D1 expression and phosphorylation of retinoblastoma protein (Rb)—two characterized regulators in cell cycle of G1—are also inhibited and the process is dependent on mTOR pathway. Conclusion Bufadienolides inhibit proliferation partially due to arresting cell cycle in G1 phase, which is mediated by inhibiting mTOR-cyclin D1/Rb signal pathway.
Collapse
|
5
|
Lira MC, Rosa FD, Panelo LC, Costas MA, Rubio MF. Role of RAC3 coactivator in the adipocyte differentiation. Cell Death Discov 2018; 4:20. [PMID: 30062065 PMCID: PMC6062518 DOI: 10.1038/s41420-018-0085-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
RAC3 is a member of the p160 family of steroid receptor coactivators and it is highly expressed in several human cancers, contributing to enhanced cell proliferation and cellular transformation. In this work, we have studied the role of RAC3 in adipogenesis in L-929 cells. Adipogenesis is a highly regulated process, involving cell cycle arrest and changes in the gene expression pattern required for morphological remodelling. We found that RAC3 expression levels are downregulated during adipocyte differentiation induced by specific stimulus. In addition, cells constitutively expressing low levels of RAC3 (shRNA), showed enhanced adipocyte differentiation which was evidenced by the early detection of the adipocyte markers Perilipin, PPARγ and Oil Red O staining. Moreover, RAC3 downregulation favoured cell arrest and autophagy. Early and late autophagy inhibitors blocked adipocyte differentiation in control cells, but partially inhibited shRAC3 differentiation, demonstrating that although autophagy is required for adipogenesis, additional signals could be trigged by RAC3 downregulation. We conclude that RAC3 is a key regulator of adipogenesis, since its downregulation generates the cellular arrest and autophagic responses that are required steps for this process.
Collapse
Affiliation(s)
- María Cecilia Lira
- 1Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,2Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Molecular Biology and Apoptosis, Instituto de Investigaciones Medicas (IDIM), Universidad de Buenos Aires, Combatientes de Malvinas Av 3150, CABA, Argentina, Buenos Aires, Argentina
| | - Francisco Damian Rosa
- 1Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,2Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Molecular Biology and Apoptosis, Instituto de Investigaciones Medicas (IDIM), Universidad de Buenos Aires, Combatientes de Malvinas Av 3150, CABA, Argentina, Buenos Aires, Argentina
| | - Laura Carolina Panelo
- 1Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,2Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Molecular Biology and Apoptosis, Instituto de Investigaciones Medicas (IDIM), Universidad de Buenos Aires, Combatientes de Malvinas Av 3150, CABA, Argentina, Buenos Aires, Argentina
| | - Mónica Alejandra Costas
- 1Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,2Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Molecular Biology and Apoptosis, Instituto de Investigaciones Medicas (IDIM), Universidad de Buenos Aires, Combatientes de Malvinas Av 3150, CABA, Argentina, Buenos Aires, Argentina
| | - María Fernanda Rubio
- 1Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,2Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Molecular Biology and Apoptosis, Instituto de Investigaciones Medicas (IDIM), Universidad de Buenos Aires, Combatientes de Malvinas Av 3150, CABA, Argentina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Panelo LC, Machado MS, Rubio MF, Jaworski F, Alvarado CV, Paz LA, Urtreger AJ, Vazquez E, Costas MA. High RAC3 expression levels are required for induction and maintaining of cancer cell stemness. Oncotarget 2018; 9:5848-5860. [PMID: 29464039 PMCID: PMC5814179 DOI: 10.18632/oncotarget.23635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
RAC3 is a transcription coactivator, usually overexpressed in several tumors and required to maintain the pluripotency in normal stem cells. In this work we studied the association between RAC3 overexpression on cancer cell stemness and the capacity of this protein to induce cancer stem properties in non tumoral cells. We performed in vitro and in vivo experiments using two strategies: by overexpressing RAC3 in the non tumoral cell line HEK293 and by silencing RAC3 in the human colorectal epithelial cell line HCT116 by transfection. Furthermore, we analysed public repository microarrays data from human colorectal tumors in different developmental stages. We found that RAC3 overexpression was mainly associated to CD133+ side-population of colon cancer cells and also to early and advanced stages of colon cancer, involving increased expression of mesenchymal and stem markers. In turn, RAC3 silencing induced diminished tumoral properties and cancer stem cells as determined by Hoechst efflux, tumorspheres and clonogenic growth, which correlated with decreased Nanog and OCT4 expression. In non tumoral cells, RAC3 overexpression induced tumoral transformation; mesenchymal phenotype and stem markers expression. Moreover, these transformed cells generated tumors in vivo. Our results demonstrate that RAC3 is required for maintaining and induction of cancer cell stemness.
Collapse
Affiliation(s)
- Laura C Panelo
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Mileni Soares Machado
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - María F Rubio
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Felipe Jaworski
- Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Cecilia V Alvarado
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Leonardo A Paz
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología "Angel H Roffo", Area de Investigación, C1417DTB Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Elba Vazquez
- Laboratorio de Inflamación y Cancer, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| | - Mónica A Costas
- Laboratorio de Biología Moleculary Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1427ARO Buenos Aires, Argentina.,Argentine National Research Council (CONICET), C1425FQB Godoy Cruz (CABA), República Argentina
| |
Collapse
|
7
|
Rubio MF, Lira MC, Rosa FD, Sambresqui AD, Salazar Güemes MC, Costas MA. RAC3 influences the chemoresistance of colon cancer cells through autophagy and apoptosis inhibition. Cancer Cell Int 2017; 17:111. [PMID: 29209153 PMCID: PMC5706160 DOI: 10.1186/s12935-017-0483-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Background RAC3 coactivator overexpression has been implicated in tumorigenesis, contributing to inhibition of apoptosis and autophagy. Both mechanisms are involved in resistance to treatment with chemotherapeutic agents. The aim of this study was to investigate its role in chemoresistance of colorectal cancer. Methods The sensitivity to 5-fluorouracil and oxaliplatin in colon cancer cells HT-29, HCT 116 and Lovo cell lines, expressing high or low natural levels of RAC3, was investigated using viability assays. Results In HCT 116 cells, we found that although 5-fluorouracil was a poor inducer of apoptosis, autophagy was strongly induced, while oxaliplatin has shown a similar ability to induce both of them. However, in HCT 116 cells expressing a short hairpin RNA for RAC3, we found an increased sensitivity to both drugs if it is compared with control cells. 5-Fluorouracil and oxaliplatin treatment lead to an enhanced caspase 3-dependent apoptosis and produce an increase of autophagy. In addition, both process have shown to be trigged faster than in control cells, starting earlier after stimulation. Conclusions Our results suggest that RAC3 expression levels influence the sensitivity to chemotherapeutic drugs. Therefore, the knowledge of RAC3 expression levels in tumoral samples could be an important contribution to design new improved therapeutic strategies in the future.
Collapse
Affiliation(s)
- María Fernanda Rubio
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Instituto de Investigaciones Medicas (IDIM) Laboratory of Molecular Biology and Apoptosis, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cecilia Lira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Instituto de Investigaciones Medicas (IDIM) Laboratory of Molecular Biology and Apoptosis, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Damián Rosa
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Instituto de Investigaciones Medicas (IDIM) Laboratory of Molecular Biology and Apoptosis, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrían Dario Sambresqui
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Department of Gastroenterology, Instituto de Investigaciones Médicas Dr. A. Lanari, UBA, Buenos Aires, Argentina
| | - María Cecilia Salazar Güemes
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Department of Oncology, Instituto de Investigaciones Médicas Dr. A. Lanari, UBA, Buenos Aires, Argentina
| | - Mónica Alejandra Costas
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina.,Instituto de Investigaciones Medicas (IDIM) Laboratory of Molecular Biology and Apoptosis, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wu Y, Zhang J, Zheng Y, Ma C, Liu XE, Sun X. miR-216a-3p Inhibits the Proliferation, Migration, and Invasion of Human Gastric Cancer Cells via Targeting RUNX1 and Activating the NF-κB Signaling Pathway. Oncol Res 2017; 26:157-171. [PMID: 28835317 PMCID: PMC7844601 DOI: 10.3727/096504017x15031557924150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This work aims to elucidate the effects and the potential underlying mechanisms of microRNA-216a-3p (miR-216a-3p) on the proliferation, migration, and invasion of gastric cancer (GC) cells. In this study, we revealed that the expression of miR-216a-3p was significantly elevated in GC tissues and cell lines. The different expression level of miR-216a-3p was firmly correlated with clinicopathological characteristics of GC patients. We next demonstrated that upregulation of miR-216a-3p could dramatically promote the ability of proliferation, migration, and invasion of GC cells using a series of experiments, whereas downregulation essentially inhibited these properties. Additionally, through bioinformatics analysis and biological approaches, we confirmed that runt-related transcription factor 1 (RUNX1) was a direct target of miR-216a-3p, and overexpression of RUNX1 could reverse the potential effect of miR-216a-3p on GC cells. Furthermore, mechanistic investigation using Western blot analysis showed that downregulation of RUNX1 by miR-216a-3p could stimulate the activation of NF-κB signaling pathway. In summary, this work proved that miR-216a-3p can promote GC cell proliferation, migration, and invasion via targeting RUNX1 and activating the NF-κB signaling pathway. Therefore, miR-216a-3p/RUNX1 could be a possible molecular target for innovative therapeutic agents against GC.
Collapse
Affiliation(s)
- Yinfang Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Yu Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Cheng Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Xing-E Liu
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Xiaodong Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
9
|
Chaves-Ferreira M, Krenn G, Vasseur F, Barinov A, Gonçalves P, Azogui O, Cumano A, Li Z, Pellegrini S, Rocha B, Laderach D. The cyclin D1 carboxyl regulatory domain controls the division and differentiation of hematopoietic cells. Biol Direct 2016; 11:21. [PMID: 27129404 PMCID: PMC4851827 DOI: 10.1186/s13062-016-0122-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022] Open
Abstract
Background The family of D cyclins has a fundamental role in cell cycle progression, but its members (D1, D2, D3) are believed to have redundant functions. However, there is some evidence that contradicts the notion of mutual redundancy and therefore this concept is still a matter of debate. Results Our data show that the cyclin D1 is indispensable for normal hematopoiesis. Indeed, in the absence of D1, either in genetic deficient mice, or after acute ablation by RNA interference, cyclins D2 and D3 are also not expressed preventing hematopoietic cell division and differentiation at its earliest stage. This role does not depend on the cyclin box, but on the carboxyl regulatory domain of D1 coded by exons 4–5, since hematopoietic differentiation is also blocked by the conditional ablation of this region. Conclusion These results demonstrate that not all functions of individual D cyclins are redundant and highlight a master role of cyclin D1 in hematopoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0122-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Chaves-Ferreira
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Present addresses: Instituto de Medicina Molecular, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Gerald Krenn
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Florence Vasseur
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Aleksandr Barinov
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France.,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Pedro Gonçalves
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Orly Azogui
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Ana Cumano
- Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | - Zhi Li
- Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France
| | | | - Benedita Rocha
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France. .,Institut Pasteur, 25, Rue du Dr Roux, Cedex 15, Paris, France.
| | - Diego Laderach
- INSERM, U 1020, U1151 - CNRS, UMR 8253, Institut Necker Enfants Malades, Faculté de Médecine Paris Descartes, 25, Rue du Dr Roux, Cedex 15, Paris, France. .,IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 2015; 35:3083-91. [PMID: 26500059 DOI: 10.1038/onc.2015.407] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
The G1 cell-cycle kinase CDK6 has long been thought of as a redundant homolog of CDK4. Although the two kinases have very similar roles in cell-cycle progression, it has recently become apparent that they differ in tissue-specific functions and contribute differently to tumor development. CDK6 is directly involved in transcription in tumor cells and in hematopoietic stem cells. These functions point to a role of CDK6 in tissue homeostasis and differentiation that is partially independent of CDK6's kinase activity and is not shared with CDK4. We review the literature on the contribution of CDK6 to transcription in an attempt to link the new findings on CDK6's transcriptional activity to cell-cycle progression. Finally, we note that anticancer therapies based on the inhibition of CDK6 kinase activity fail to take into account its kinase-independent role in tumor development.
Collapse
|
11
|
Fernández Larrosa PN, Ruíz Grecco M, Mengual Gómez D, Alvarado CV, Panelo LC, Rubio MF, Alonso DF, Gómez DE, Costas MA. RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. Cell Death Dis 2015; 6:e1902. [PMID: 26469953 PMCID: PMC4632280 DOI: 10.1038/cddis.2015.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022]
Abstract
Receptor-associated coactivator 3 (RAC3) is a nuclear receptor coactivator usually overexpressed in tumors that exerts oncogenic functions in the cytoplasm and the nucleus. Although as part of its oncogenic actions it was previously identified as an inhibitor of apoptosis and autophagy, its expression is required in order to preserve the pluripotency and embryonic stem cell self-renewal. In this work we investigated its role in cellular senescence. We found that RAC3 overexpression in the nontumoral HEK293 cells inhibits the premature senescence induced by hydrogen peroxide or rapamycin. The mechanism involves not only the inhibition of autophagy early induced by these stimuli in the pathway to senescence, but also the increase in levels and nuclear localization of both the cell cycle suppressors p53/p21 and the longevity promoters FOXO1A, FOXO3A and SIRT1. Furthermore, we found that RAC3 overexpression is required in order to maintain the telomerase activity. In tumoral HeLa cells its activity was inhibited by depletion of RAC3 inducing replicative senescence. Moreover, we demonstrated that in vivo, levels of RAC3 are downregulated in the liver from aged as compared with young rats, whereas the levels of p21 are increased, correlating with the expected senescent cell contents in aged tissues. A similar downregulation of RAC3 was observed in the premature and replicative senescence of human fetal WI-38 cells and premature senescence of hepatocyte HepG2 cell line. Taken together, all these results demonstrate that RAC3 is an inhibitor of senescence whose downregulation in aged individuals could be probably a tumor suppressor mechanism, avoiding the clonal expansion of risky old cells having damaged DNA.
Collapse
Affiliation(s)
- P N Fernández Larrosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M Ruíz Grecco
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D Mengual Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - C V Alvarado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - L C Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M F Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D F Alonso
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - D E Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - M A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| |
Collapse
|
12
|
Alvarado CV, Rubio MF, Fernández Larrosa PN, Panelo LC, Azurmendi PJ, Ruiz Grecco M, Martínez-Nöel GA, Costas MA. The levels of RAC3 expression are up regulated by TNF in the inflammatory response. FEBS Open Bio 2014; 4:450-7. [PMID: 24918060 PMCID: PMC4050193 DOI: 10.1016/j.fob.2014.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 12/01/2022] Open
Abstract
The inflammatory response increases the expression of RAC3 in vitro and in vivo. TNF induces the increase of RAC3 at transcriptional level through NF-κB activation. Glucocorticoids also induce the increase of RAC3 expression levels. RAC3 appears to be essential for NF-κB- and GR-mediated transcription.
RAC3 is a coactivator of glucocorticoid receptor and nuclear factor-κB (NF-κB) that is usually over-expressed in tumors and which also has important functions in the immune system. We investigated the role of the inflammatory response in the control of RAC3 expression levels in vivo and in vitro. We found that inflammation regulates RAC3 levels. In mice, sub-lethal doses of lipopolysaccharide induce the increase of RAC3 in spleen and the administration of the synthetic anti-inflammatory glucocorticoid dexamethasone has a similar effect. However, the simultaneous treatment with both stimuli is mutually antagonistic. In vitro stimulation of the HEK293 cell line with tumor necrosis factor (TNF), one of the cytokines induced by lipopolysaccharide, also increases the levels of RAC3 mRNA and protein, which correlates with an enhanced transcription dependent on the RAC3 gene promoter. We found that binding of the transcription factor NF-κB to the RAC3 gene promoter could be responsible for these effects. Our results suggest that increase of RAC3 during the inflammatory response could be a molecular mechanism involved in the control of sensitivity to both pro- and anti-inflammatory stimuli in order to maintain the normal healthy course of the immune response.
Collapse
Affiliation(s)
- Cecilia Viviana Alvarado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - María Fernanda Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
- Argentine National Research Council (CONICET), Argentina
| | - Pablo Nicolas Fernández Larrosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
- Argentine National Research Council (CONICET), Argentina
| | - Laura Carolina Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Pablo Javier Azurmendi
- Laboratorio de Riñón Experimental, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Marina Ruiz Grecco
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Giselle Astrid Martínez-Nöel
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
- Argentine National Research Council (CONICET), Argentina
| | - Mónica Alejandra Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
- Argentine National Research Council (CONICET), Argentina
- Corresponding author at: Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina. Tel.: +54 01145148702; fax: +54 11 4523 8947.
| |
Collapse
|
13
|
Zhu W, Tan Y, Qiu Q, Li X, Huang Z, Fu Y, Liang M. Comparison of the properties of human CD146+ and CD146- periodontal ligament cells in response to stimulation with tumour necrosis factor α. Arch Oral Biol 2013; 58:1791-803. [PMID: 24200306 DOI: 10.1016/j.archoralbio.2013.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/20/2013] [Accepted: 09/29/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Periodontal ligament stem cells (PDLSCs) can be used in periodontal regeneration. Tumour necrosis factor-alpha (TNF-α) participates in the regulation of cell proliferation, apoptosis, differentiation, and migration. However, whether TNF-α can affect the biological features of PDLSCs is still unclear. The objective of this study was to illustrate the biological effects (proliferation, apoptosis, osteogenesis and migration) of TNF-α on human CD146 positive periodontal ligament cells (CD146+PLDCs) and CD146 negative periodontal ligament cells (CD146-PDLCs). METHODS CD146±PDLCs were isolated from human PDLCs and analyzed using a fluorescence-activated cell sorter. The biological effects of TNF-α on CD146±PDLCs were evaluated by CCK-8 assay (proliferation), DAPI staining (apoptosis), alizarin red staining and alkaline phosphatase activities assay (osteogenesis), and wounding assay and transwell assay (migration). RESULTS CD146+PDLCs, which expressed MSC surface markers CD105, CD90, CD73, CD44, and Stro-1, showed higher proliferative and osteogenic potential than CD146-PDLCs. TNF-α at a dose of 2.5ng/ml was found to enhance both proliferation and osteogenesis in CD146+PDLCs. At 5ng/ml, TNF-α promoted proliferation, osteogenesis, and apoptosis in CD146+PDLCs and enhanced osteogenesis in CD146-PDLCs. At 10ng/ml, TNF-α only aggravated apoptosis in CD146+PDLCs. The migratory ability of both CD146+PDLCs and CD146-PDLCs was not altered by TNF-α. CONCLUSIONS CD146+PDLCs were subpopulation of MSC. It showed greater proliferative and osteogenic potential than CD146-PDLCs. At low concentration, TNF-α was beneficial to CD146+PDLCs on proliferation and osteogenesis, and at high concentration it was detrimental. CD146-PDLCs were found to be less sensitive to TNF-α.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Cooperation between Dmp1 loss and cyclin D1 overexpression in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1339-1350. [PMID: 23938323 DOI: 10.1016/j.ajpath.2013.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/10/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023]
Abstract
Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1-cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1-induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1(+/+);MMTV-cyclin D1 and Dmp1(+/+);MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer.
Collapse
|
15
|
Notas G, Kampa M, Pelekanou V, Troullinaki M, Jacquot Y, Leclercq G, Castanas E. Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells. Mol Oncol 2013; 7:595-610. [PMID: 23474223 DOI: 10.1016/j.molonc.2013.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023] Open
Abstract
ERα17p is a peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially found to interfere with ERα-related calmodulin binding. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and ERE-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p-induced apoptosis and modified the actin network, influencing cell motility. Here, we report that ERα17p internalizes in breast cancer cells (T47D, MDA-MB-231, SKBR3) and induces a massive early (3 h) transcriptional activity. Remarkably, about 75% of significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to identify a specific ERα17p signature related to ERα as well as its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36, it mainly triggers inhibitory actions on inflammation. This is the first work reporting a detailed ERα36-specific transcriptional signature. In addition, we report that ERα17p-induced transcripts related to apoptosis and actin modifying effects of the peptide are independent from its estrogen receptor(s)-related actions. We discuss our findings in view of the potential use of ERα17p as a selective peptidomimetic estrogen receptor modulator (PERM).
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion 71003, Greece
| | | | | | | | | | | | | |
Collapse
|
16
|
Xia J, Wang F, Wang L, Fan Q. Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway. Tumour Biol 2013; 34:317-28. [PMID: 23079781 DOI: 10.1007/s13277-012-0553-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence has demonstrated that high-temperature requirement protein A1 (HtrA1) appears to be involved in several important biological processes in mammals such as growth, apoptosis, embryogenesis, invasion, metastasis, and cancer and has been verified to be reduced in a variety of human tumors. However, its precise functions and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we detected HtrA1 level in ESCC tissues and cells and investigated the biological roles of HtrA1 in ESCC. We found that expressions of HtrA1 mRNA and protein in ESCC tissues and cells were significantly lower than those in normal esophageal epithelial tissues and cells (P < 0.05). Expressions of HtrA1 mRNA and protein were closely associated with TNM staging and lymph node metastasis (P < 0.05). Additionally, the survival rate of patients with low HtrA1 level was lower than those patients with high HtrA1 level (P < 0.05). Elevated HtrA1 level markedly inhibited cell proliferation in vitro and in vivo, reduced cell invasion in vitro, and induced cell apoptosis. Notably, HtrA1 overexpression inhibited phosphorylation levels of IκBα and p65 subunit of the NF-κB signaling pathway, but increased total IκBα level, coupled with decreases of Ki-67, Bcl-2, Bcl-xL, cyclin D1, and MMP-9 proteins and increase of caspase-3 activity. Overall, these data suggest that HtrA1 may play critical roles in the tumorgenesis and progression of ESCC, and HtrA1 overexpression exerts its anti-tumor effect by blocking the NF-κB signaling pathway; thus, manipulation of HtrA1 may be an effective molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Jin Xia
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | | | | | | |
Collapse
|