1
|
De Silva WGM, Sequeira VB, Yang C, Dixon KM, Holland AJA, Mason RS, Rybchyn MS. 1,25-Dihydroxyvitamin D 3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int J Mol Sci 2024; 25:5583. [PMID: 38891771 PMCID: PMC11171802 DOI: 10.3390/ijms25115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.
Collapse
Affiliation(s)
| | - Vanessa Bernadette Sequeira
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katie Marie Dixon
- Department of Anatomy and Histology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Sobotka AA, Tempera I. PARP1 as an Epigenetic Modulator: Implications for the Regulation of Host-Viral Dynamics. Pathogens 2024; 13:131. [PMID: 38392869 PMCID: PMC10891851 DOI: 10.3390/pathogens13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The principal understanding of the Poly(ADP-ribose) polymerase (PARP) regulation of genomes has been focused on its role in DNA repair; however, in the past few years, an additional role for PARPs and PARylation has emerged in regulating viral-host interactions. In particular, in the context of DNA virus infection, PARP1-mediated mechanisms of gene regulations, such as the involvement with cellular protein complexes responsible for the folding of the genome into the nucleus, the formation of chromatin loops connecting distant regulatory genomic regions, and other methods of transcriptional regulation, provide additional ways through which PARPs can modulate the function of both the host and the viral genomes during viral infection. In addition, potential viral amplification of the activity of PARPs on the host genome can contribute to the pathogenic effect of viral infection, such as viral-driven oncogenesis, opening the possibility that PARP inhibition may represent a potential therapeutic approach to target viral infection. This review will focus on the role of PARPs, particularly PARP1, in regulating the infection of DNA viruses.
Collapse
Affiliation(s)
- Asher A. Sobotka
- Wistar Institute, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
4
|
Bhoir S, Ogundepo O, Yu X, Shi R, De Benedetti A. Exploiting TLK1 and Cisplatin Synergy for Synthetic Lethality in Androgen-Insensitive Prostate Cancer. Biomedicines 2023; 11:2987. [PMID: 38001987 PMCID: PMC10669050 DOI: 10.3390/biomedicines11112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular organisms possess intricate DNA damage repair and tolerance pathways to manage various DNA lesions arising from endogenous or exogenous sources. The dysregulation of these pathways is associated with cancer development and progression. Synthetic lethality (SL), a promising cancer therapy concept, involves exploiting the simultaneous functional loss of two genes for selective cell death. PARP inhibitors (PARPis) have demonstrated success in BRCA-deficient tumors. Cisplatin (CPT), a widely used chemotherapy agent, forms DNA adducts and crosslinks, rendering it effective against various cancers, but less so for prostate cancer (PCa) due to resistance and toxicity. Here, we explore the therapeutic potential of TLK1, a kinase upregulated in androgen-insensitive PCa cells, as a target for enhancing CPT-based therapy. TLK1 phosphorylates key homologous recombination repair (HRR) proteins, RAD54L and RAD54B, which are critical for HRR alongside RAD51. The combination of CPT with TLK1 inhibitor J54 exhibits SL in androgen-insensitive PCa cells. The formation of double-strand break intermediates during inter-strand crosslink processing necessitates HRR for effective repair. Therefore, targeting TLK1 with J54 enhances the SL of CPT by impeding HRR, leading to increased sensitivity in PCa cells. These findings suggest a promising approach for improving CPT-based therapies in PCa, particularly in androgen-insensitive cases. By elucidating the role of TLK1 in CPT resistance, this study provides valuable insights into potential therapeutic targets to overcome PCa resistance to CPT chemotherapy. Further investigations into TLK1 inhibition in combination with other DNA-damaging agents may pave the way for more effective and targeted treatments for PCa and other cancers that exhibit resistance to traditional chemotherapy agents.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA; (S.B.); (O.O.); (X.Y.)
| | - Oluwatobi Ogundepo
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA; (S.B.); (O.O.); (X.Y.)
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA; (S.B.); (O.O.); (X.Y.)
| | - Runhua Shi
- Department of Medicine, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA; (S.B.); (O.O.); (X.Y.)
| |
Collapse
|
5
|
Voogd EJHF, Frega M, Hofmeijer J. Neuronal Responses to Ischemia: Scoping Review of Insights from Human-Derived In Vitro Models. Cell Mol Neurobiol 2023; 43:3137-3160. [PMID: 37380886 PMCID: PMC10477161 DOI: 10.1007/s10571-023-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.
Collapse
Affiliation(s)
- Eva J H F Voogd
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| | - Monica Frega
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
6
|
Bencsics M, Bányai B, Ke H, Csépányi-Kömi R, Sasvári P, Dantzer F, Hanini N, Benkő R, Horváth EM. PARP2 downregulation in T cells ameliorates lipopolysaccharide-induced inflammation of the large intestine. Front Immunol 2023; 14:1135410. [PMID: 37457706 PMCID: PMC10347374 DOI: 10.3389/fimmu.2023.1135410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction T cell-dependent inflammatory response with the upregulation of helper 17 T cells (Th17) and the downregulation of regulatory T cells (Treg) accompanied by the increased production of tumor necrosis alpha (TNFa) is characteristic of inflammatory bowel diseases (IBD). Modulation of T cell response may alleviate the inflammation thus reduce intestinal damage. Poly(ADP-ribose) polymerase-2 (PARP2) plays role in the development, differentiation and reactivity of T cell subpopulations. Our aim was to investigate the potential beneficial effect of T cell-specific PARP2 downregulation in the lipopolysaccharide (LPS) induced inflammatory response of the cecum and the colon. Methods Low-dose LPS was injected intraperitoneally to induce local inflammatory response, characterized by increased TNFa production, in control (CD4Cre; PARP2+/+) and T cell-specific conditional PARP2 knockout (CD4Cre; PARP2f/f) mice. TNFa, IL-1b, IL-17 levels were measured by ELISA, oxidative-nitrative stress was estimated by immunohistochemistry, while PARP1 activity, p38 MAPK and ERK phosphorylation, and NF-kB expression in large intestine tissue samples were examined by Western-blot. Systemic & local T cell subpopulation; Th17 and Treg alterations were also investigated using flowcytometry and immunohistochemistry. Results In control animals, LPS induced intestinal inflammation with increased TNFa production, while no significant elevation of TNFa production was observed in T cell-specific PARP2 knockout animals. The absence of LPS-induced elevation in TNFa levels was accompanied by the absence of IL-1b elevation and the suppression of IL-17 production, showing markedly reduced inflammatory response. The increase in oxidative-nitrative stress and PARP1-activation was also absent in these tissues together with altered ERK and NF-kB activation. An increase in the number of the anti-inflammatory Treg cells in the intestinal mucosa was observed in these animals, together with the reduction of Treg count in the peripheral circulation. Discussion Our results confirmed that T cell-specific PARP2 downregulation ameliorated LPS-induced colitis. The dampened TNFa production, decreased IL-17 production and the increased intestinal regulatory T cell number after LPS treatment may be also beneficial during inflammatory processes seen in IBD. By reducing oxidative-nitrative stress and PARP1 activation, T cell-specific PARP2 downregulation may also alleviate intestinal tissue damage.
Collapse
Affiliation(s)
- Máté Bencsics
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Bálint Bányai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Haoran Ke
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | - Péter Sasvári
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Françoise Dantzer
- UMR7242, Biotechnology and Cell Signaling, CNRS/Université de Strasbourg, Strasbourg, France
| | - Najat Hanini
- UMR7242, Biotechnology and Cell Signaling, CNRS/Université de Strasbourg, Strasbourg, France
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
7
|
Mongelos MA, Sosa FN, Pineda GE, Fiorentino G, Santiago A, Abelleyro MM, Rossetti LC, Exeni R, De Brasi CD, Palermo MS, Ramos MV. Assessment of interleukin-10 promoter variant (-1082A/G) and cytokine production in patients with hemolytic uremic syndrome. Front Pediatr 2023; 11:1210158. [PMID: 37425258 PMCID: PMC10327435 DOI: 10.3389/fped.2023.1210158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Hemolytic uremic syndrome (HUS) is a condition that results in acute kidney failure mainly in children, which is caused by Shiga toxin-producing Escherichia coli and inflammatory response. Although anti-inflammatory mechanisms are triggered, studies on the implication in HUS are scarce. Interleukin-10 (IL-10) regulates inflammation in vivo, and the interindividual differences in its expression are related to genetic variants. Notably, the single nucleotide polymorphism (SNP) rs1800896 -1082 (A/G), located in the IL-10 promoter, regulates cytokine expression. Methods Plasma and peripheral blood mononuclear cells (PBMC) were collected from healthy children and HUS patients exhibiting hemolytic anemia, thrombocytopenia, and kidney damage. Monocytes identified as CD14+ cells were analyzed within PBMC by flow cytometry. IL-10 levels were quantified by ELISA, and SNP -1082 (A/G) was analyzed by allele-specific PCR. Results Circulating IL-10 levels were increased in HUS patients, but PBMC from these patients exhibited a lower capacity to secrete this cytokine compared with those from healthy children. Interestingly, there was a negative association between the circulating levels of IL-10 and inflammatory cytokine IL-8. We observed that circulating IL-10 levels were threefold higher in HUS patients with -1082G allele in comparison to AA genotype. Moreover, there was relative enrichment of GG/AG genotypes in HUS patients with severe kidney failure. Discussion Our results suggest a possible contribution of SNP -1082 (A/G) to the severity of kidney failure in HUS patients that should be further evaluated in a larger cohort.
Collapse
Affiliation(s)
- Micaela Aldana Mongelos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gonzalo Ezequiel Pineda
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriela Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Miguel Martín Abelleyro
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Liliana Carmen Rossetti
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Carlos Daniel De Brasi
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
8
|
Vicari HP, Lima K, Costa-Lotufo LV, Machado-Neto JA. Cellular and Molecular Effects of Eribulin in Preclinical Models of Hematologic Neoplasms. Cancers (Basel) 2022; 14:cancers14246080. [PMID: 36551566 PMCID: PMC9776580 DOI: 10.3390/cancers14246080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the advances in understanding the biology of hematologic neoplasms which has resulted in the approval of new drugs, the therapeutic options are still scarce for relapsed/refractory patients. Eribulin is a unique microtubule inhibitor that is currently being used in the therapy for metastatic breast cancer and soft tissue tumors. Here, we uncover eribulin's cellular and molecular effects in a molecularly heterogeneous panel of hematologic neoplasms. Eribulin reduced cell viability and clonogenicity and promoted apoptosis and cell cycle arrest. The minimal effects of eribulin observed in the normal leukocytes suggested selectivity for malignant blood cells. In the molecular scenario, eribulin induces DNA damage and apoptosis markers. The ABCB1, ABCC1, p-AKT, p-NFκB, and NFκB levels were associated with responsiveness to eribulin in blood cancer cells, and a resistance eribulin-related target score was constructed. Combining eribulin with elacridar (a P-glycoprotein inhibitor), but not with PDTC (an NFkB inhibitor), increases eribulin-induced apoptosis in leukemia cells. In conclusion, our data indicate that eribulin leads to mitotic catastrophe and cell death in blood cancer cells. The expression and activation of MDR1, PI3K/AKT, and the NFκB-related targets may be biomarkers of the eribulin response, and the combined treatment of eribulin and elacridar may overcome drug resistance in these diseases.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulos 05508-000, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulos 05508-000, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo 01246-903, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulos 05508-000, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulos 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7467
| |
Collapse
|
9
|
Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers (Basel) 2022; 14:cancers14153806. [PMID: 35954469 PMCID: PMC9367559 DOI: 10.3390/cancers14153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary liver cancer is the sixth most common cancer in men and seventh in women, with hepatocellular carcinoma (HCC) being the most common form (75-85% of primary liver cancer cases) and the most frequent etiology being viral infections (HBV and HCV). In 2020, mortality represented 92% of the incidence-830,180 deaths for 905,677 new cases. Few treatment options exist for advanced or terminal-stage HCC, which will receive systemic therapy or palliative care. Although radiotherapy is used in the treatment of many cancers, it is currently not the treatment of choice for HCC, except in the palliative setting. However, as radiosensitizing drugs, such as inhibitors of DNA repair enzymes, could potentiate the effects of RT in HCC by exploiting the modulation of DNA repair processes found in this tumour type, RT and such drugs could provide a treatment option for HCC. In this review, we provide an overview of PARP1 involvement in DNA damage repair pathway and discuss its potential implication in HCC. In addition, the use of PARP inhibitors and PARP decoys is described for the treatment of HCC and, in particular, in HBV-related HCC.
Collapse
|
10
|
Doukas PG, Vageli DP, Judson BL. The Role of
PARP
‐1 and
NF‐κB
in
Bile‐Induced DNA
Damage and Oncogenic Profile in Hypopharyngeal Cells. Laryngoscope 2022; 133:1146-1155. [PMID: 35791892 DOI: 10.1002/lary.30284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS We recently documented that acidic bile, a gastroesophageal reflux content, can cause invasive hypopharyngeal squamous cell carcinoma, by inducing widespread DNA damage and promoting nuclear factor kappa B (NF-κB)-related oncogenic molecular events. Poly or adenosine diphosphate (ADP)-ribose polymerase-1 (PARP-1), a sensitive sensor of DNA damage, may interact with NF-κB. We hypothesized that PARP-1 is activated in hypopharyngeal cells (HCs) with marked DNA damage caused by acidic bile, hence there is an association between PARP-1 and NF-κB activation or its related oncogenic profile, in this process. STUDY DESIGN In vitro study. METHODS We targeted PARP-1 and NF-κB(p65), using pharmacologic inhibitors, 1.0 μM Rucaparib (AG014699) and 10 μM BAY 11-7082 {3-[4=methylphenyl)sulfonyl]-(2E)-propenenitrile}, respectively, or silencing their gene expression (siRNAs) and used immunofluorescence, luciferase, cell viability, direct enzyme-linked immunosorbent assays, and qPCR analysis to detect the effect of targeting PARP-1 or NF-κB in acidic bile-induced DNA damage, PARP-1, p-NF-κB, and B-cell lymphoma 2 (Bcl-2) expression, as well as NF-κB transcriptional activity, cell survival, and mRNA oncogenic phenotype in HCs. RESULTS We showed that (i) PARP-1 is overexpressed by acidic bile, (ii) targeting NF-κB adequately prevents the acidic bile-induced DNA double-strand breaks (DSBs) by gamma H2A histone family member X (γH2AX), oxidative DNA/RNA damage, PARP-1 overexpression, anti-apoptotic mRNA phenotype, and cell survival, whereas (iii) targeting PARP-1 preserves elevated DNA damage, NF-κB activation, and anti-apoptotic phenotype. CONCLUSION We document for the first time that the activation of PARP-1 is an early event during bile reflux-related head and neck carcinogenesis and that NF-κB can mediate DNA damage and PARP-1 activation. Our data encourage further investigation into how acidic bile-induced activated NF-κB mediates DNA damage in hypopharyngeal carcinogenesis. LEVEL OF EVIDENCE NA Laryngoscope, 133:1146-1155, 2023.
Collapse
Affiliation(s)
- Panagiotis G. Doukas
- The Yale Larynx Laboratory, Department of Surgery Section of Otolaryngology, Yale School of Medicine New Haven Connecticut USA
| | - Dimitra P. Vageli
- The Yale Larynx Laboratory, Department of Surgery Section of Otolaryngology, Yale School of Medicine New Haven Connecticut USA
| | - Benjamin L. Judson
- The Yale Larynx Laboratory, Department of Surgery Section of Otolaryngology, Yale School of Medicine New Haven Connecticut USA
| |
Collapse
|
11
|
Tiwari P, Khan H, Singh TG, Grewal AK. Poly (ADP-ribose) polymerase: An Overview of Mechanistic Approaches and Therapeutic Opportunities in the Management of Stroke. Neurochem Res 2022; 47:1830-1852. [PMID: 35437712 DOI: 10.1007/s11064-022-03595-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Stroke is one of the leading causes of morbidity and mortality accompanied by blood supply loss to a particular brain area. Several mechanistic approaches such as inhibition of poly (ADP-ribose) polymerase, therapies against tissue thrombosis, and neutrophils lead to stroke's therapeutic intervention. Evidence obtained with the poly (ADP-ribose) polymerase (PARP) inhibition and animals having a deficiency of PARP enzymes; represented the role of PARP in cerebral stroke, ischemia/reperfusion, and neurotrauma. PARP is a nuclear enzyme superfamily with various isoforms, each with different structural domains and functions, and out of all, PARP-1 is the best-characterized member. It has been shown to perform multiple physiological as well as pathological processes, including its role in inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction. The enzyme interacts with NF-κB, p53, and other transcriptional factors to regulate survival and cell death and modulates multiple downstream signaling pathways. Clinical trials have also been conducted using PARP inhibitors for numerous disorders and have shown positive results. However, additional information is yet to be established for the therapeutic intervention of PARP inhibitors in stroke. These agents' utilization appears to be challenging due to their unknown potential long-term side effects. PARP activity increased during ischemia, but its inhibition provided significant neuroprotection. Despite the increased interest in PARP as a pharmacological modulator for novel therapeutic therapies, the current review focused on stroke and poly ADP-ribosylation.
Collapse
Affiliation(s)
- Palak Tiwari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
12
|
Lee CM, Kang MA, Bae JS, Park K, Yang YH, Lee J, Jang KY, Park SH. An in vitro study on anti-carcinogenic effect of remdesivir in human ovarian cancer cells via generation of reactive oxygen species. Hum Exp Toxicol 2022; 41:9603271221089257. [PMID: 35417658 DOI: 10.1177/09603271221089257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Remdesivir is an anti-viral drug that inhibits RNA polymerase. In 2020, remdesivir was recognized as the most promising therapeutic agents against coronavirus disease 2019 (COVID-19). However, the effects of remdesivir on cancers have hardly been studied. PURPOSE Here, we reported that the anti-carcinogenic effect of remdesivir on SKOV3 cells, one of human ovarian cancer cell lines. RESEARCH DESIGN We anlalyzed the anti-carcarcinogenic effect of remdesivir in SKOV3 cells by performing in vitro cell assay and western blotting. RESULTS WST-1 showed that remdesivir decreased cell viability in SKOV3 cells. Experiments conducted by Muse Cell Analyzer showed that remdesivir-induced apoptosis in SKOV3 cells. We found that the expression level of FOXO3, Bax, and Bim increased, whereas Bcl-2, caspase-3, and caspase-7 decreased by remdesivir in SKOV3 cells. Furthermore, we observed that intracellular reactive oxygen species (ROS) level increased after treatment of remdesivir in SKOV3 cells. Interestingly, cytotoxicity of remdesivir decreased after treatment of N-Acetylcysteine. CONCLUSION Taken together, our results demonstrated that remdesivir has an anti-carcinogenic effect on SKOV3 cells vis up-regulation of reactive oxygen species, which suggests that remdesivir could be a promising reagent for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chang Min Lee
- Department of Biological and Chemical Engineering, 65686Hongik University, Sejong, South Korea
| | | | - Jun Sang Bae
- Department of Pathology, 35030Wonkwang University, Iksan, South Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, 65686Hongik University, Sejong, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, 34965Konkuk University, Seoul, South Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, 65666Sungkyunkwan University, Suwon, South Korea
| | - Kyu Yun Jang
- Department of Pathology, 90158Jeonbuk National University Medical School, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea.,Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, 65686Hongik University, Sejong, South Korea
| |
Collapse
|
13
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Ibrahim MA, Albahlol IA, Wani FA, Abd-Eltawab Tammam A, Kelleni MT, Sayeed MU, Abd El-Fadeal NM, Mohamed AA. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem Biol Interact 2021; 338:109402. [PMID: 33587916 DOI: 10.1016/j.cbi.2021.109402] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/02/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin is an important antineoplastic drug used in multiple chemotherapeutic regimens but unfortunately causes serious toxic effects as ovarian and uterine toxicity. This study aimed to investigate the potential protective effect of resveratrol (RSV) against cisplatin-induced ovarian and uterine toxicity in female rats. Thirty-two female Wistar rats were divided randomly into four groups (n = 8 in each). Control group received oral normal saline for 28 days; RSV group received RSV (10 mg/kg; daily) via oral gavage; CIS group received a single dose of CIS (7 mg/kg; i.p.) on the 21st day; (CIS + RSV) group received both RSV and CIS by the same schedules and doses of RSV and CIS groups, respectively. Results demonstrated a significant decrease in MDA level and a significant increase in both glutathione content and activity of the antioxidant enzymes GPx, SOD, and CAT in the tissues of the ovary and uterus of CIS + RSV group in comparison to that of CIS group (P<0.05), also there are significantly decreased tissue levels of the proinflammatory cytokines and enzymes (NF-κB, IL-1β, IL-6, TNF-α, COX-2, and iNOS), increased estradiol, progesterone, prolactin and decreased FSH serum levels in CIS + RSV group compared to CIS group (P < 0.05). Moreover, there is downregulation of tissues Cleaved Caspase-3, NF-κB and Cox-2 proteins as shown in Western blot analysis, also apoptosis was significantly inhibited, evidenced by downregulation of Bax and upregulation of Bcl-2 proteins, and the ovarian and uterine histological architecture and integrity were maintained in CIS + RSV group compared to CIS group. In conclusion, these findings indicate that RSV has beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the ovarian and uterine tissues of female rats.
Collapse
Affiliation(s)
- Mahrous Abdelbasset Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia, 41522, Egypt.
| | - Ibrahim Abdelkhalek Albahlol
- Obstetrics and Gynecology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Obstetrics and Gynecology Department, Faculty of Medicine, Mansoura University, Egypt.
| | - Farooq Ahmed Wani
- Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia.
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Mina Thabet Kelleni
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University (SCU), Ismailia, Egypt.
| | - Alaa Abdelhamid Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
15
|
Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem 2021; 296:100466. [PMID: 33640455 PMCID: PMC8042173 DOI: 10.1016/j.jbc.2021.100466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability primarily by correcting replication errors. MMR deficiency can lead to cancer development and bolsters cancer cell resistance to chemotherapy. However, recent studies have shown that checkpoint blockade therapy is effective in MMR-deficient cancers, thus the ability to identify cancer etiology would greatly benefit cancer treatment. MutS homolog 2 (MSH2) is an obligate subunit of mismatch recognition proteins MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3). Precise regulation of MSH2 is critical, as either over- or underexpression of MSH2 results in an increased mutation frequency. The mechanism by which cells maintain MSH2 proteostasis is unknown. Using functional ubiquitination and deubiquitination assays, we show that the ovarian tumor (OTU) family deubiquitinase ubiquitin aldehyde binding 1 (OTUB1) inhibits MSH2 ubiquitination by blocking the E2 ligase ubiquitin transfer activity. Depleting OTUB1 in cells promotes the ubiquitination and subsequent degradation of MSH2, leading to greater mutation frequency and cellular resistance to genotoxic agents, including the common chemotherapy agents N-methyl-N'-nitro-N-nitrosoguanidine and cisplatin. Taken together, our data identify OTUB1 as an important regulator of MSH2 stability and provide evidence that OTUB1 is a potential biomarker for cancer etiology and therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhijie Chang
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China.
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
16
|
Vicari HP, Lima K, Gomes RDC, Fernandes DC, da Silva JCL, Rodrigues Junior MT, Barroso de Oliveira AS, Dos Santos RN, Andricopulo AD, Coelho F, Costa-Lotufo LV, Machado-Neto JA. Synthetic cyclopenta[b]indoles exhibit antineoplastic activity by targeting microtubule dynamics in acute myeloid leukemia cells. Eur J Pharmacol 2021; 894:173853. [PMID: 33422507 DOI: 10.1016/j.ejphar.2021.173853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Acute promyelocytic leukemia (APL) is associated with PML-RARα oncogene, which is treated using all-trans retinoic acid (ATRA)-based chemotherapy. However, chemoresistance is observed in 20-30% of treated patients and represents a clinical challenge, raising the importance of the development of new therapeutic options. In the present study, the effects of three synthetic cyclopenta[b]indoles on the leukemia phenotype were investigated using NB4 (ATRA-sensitive) and NB4-R2 (ATRA-resistant) cells. Among the tested synthetic cyclopenta[b]indoles, compound 2, which contains a heterocyclic nucleus, was the most active, presenting time-dependent cytotoxic activity in the μM range in APL cells, without cytotoxicity for normal leukocytes, and was selected for further characterization. Compound 2 significantly decreased clonogenicity, increased apoptosis, and caused cell cycle arrest at S and G2/M phases in a drug concentration-dependent manner. Morphological analyses indicated aberrant mitosis and diffuse tubulin staining upon compound 2 exposure, which corroborates cell cycle findings. In the molecular scenario, compound 2 reduced STMN1 expression and activity, and induced PARP1 cleavage and H2AX and CHK2 phosphorylation, and modulated CDKN1A, PMAIP1, GADD45A, and XRCC3 expressions, indicating reduction of cell proliferation, apoptosis, and DNA damage. Moreover, in the in vivo tubulin polymerization assay, NB4 and NB4-R2 cells showed a reduction in the levels of polymerized tubulin upon compound 2 exposure, which indicates tubulin as a target of the drug. Molecular docking supports this hypothesis. Taken together, these data indicated that compound 2 exhibits antileukemic effects through disrupting the microtubule dynamics, identifying a possible novel potential antineoplastic agent for the treatment of ATRA-resistant APL.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Ralph da Costa Gomes
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Campinas, São Paulo, SP, 13083-970, Brazil
| | - Daniara Cristina Fernandes
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Campinas, São Paulo, SP, 13083-970, Brazil; Currently at Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Matão, SP, 15991-502, Brazil
| | - Jean Carlos Lipreri da Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | | | | | | | - Fernando Coelho
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Campinas, São Paulo, SP, 13083-970, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
17
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
18
|
The redox function of apurinic/apyrimidinic endonuclease 1 as key modulator in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111992. [DOI: 10.1016/j.jphotobiol.2020.111992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/04/2023]
|
19
|
Tsotetsi N, Amoako DG, Somboro AM, Khumalo HM, Khan RB. Molecular mechanisms underlying the renoprotective effects of 1,4,7-triazacyclononane: a βeta-lactamase inhibitor. Cytotechnology 2020; 72:785-796. [PMID: 32920746 DOI: 10.1007/s10616-020-00422-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Broad-spectrum β-lactam antibiotics such as penicillin are routinely used against both Gram-negative and Gram-positive bacteria. However, bacteria that produce β-lactamase have developed resistance against these antibiotics by cleaving the β-lactam ring and rendering the antibiotic inactive. To combat this effect, 1,4,7- Triazacyclononane (TACN), a cyclic organic compound derived from cyclononanes has been shown to preserve the activity of β-lactam antibiotics by inhibiting β-lactamase. However, its cytotoxic effects require elucidation. Given that the cytotoxic target for many therapeutics is the kidney, this study investigated the effects of TACN on human embryonic kidney cells (Hek293) cells. Hek293 cells were treated with TACN (0-500 µM) for 24 h and the cytotoxicity was assessed (MTT and LDH assay). Apoptosis was luminometrically detected by measuring phosphatidylserine externalisation and caspase activity and fluorescently detecting necrosis. DNA fragmentation was visualised using fluorescent microscopy. Expression of the apoptosis-related protein were determined by western blot. The results generated indicate that TACN does not initiate necrosis as LDH was decreased. Likewise, decreased apoptosis was supported by the decreased phosphatidylserine, caspases, Bax, cleaved PARP, IAP and NF-kB. However, increased DNA fragmentation was associated with increased p53. Therefore, effects of TACN at the nucleus, produced a p53 response to initiate DNA repair and did not culminate in cell death. The findings show that TACN is not cytotoxic to Hek293 cells via the apoptotic route. Since TACN did not induce cell death, its potential as a metallo-β-lactamase inhibitor (MBLI) may be exploited to counteract the effect of MBL-producing bacteria. Restoring β-lactam activity will curb the global menace of antibiotic resistance.
Collapse
Affiliation(s)
- Nrateng Tsotetsi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Khumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
20
|
Ognibene M, Pezzolo A. Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma. Sci Rep 2020; 10:12902. [PMID: 32737364 PMCID: PMC7395171 DOI: 10.1038/s41598-020-69499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma, an embryonic tumor arising from neuronal crest progenitor cells, has been shown to contain a population of undifferentiated stem cells responsible for the malignant state and the unfavorable prognosis. Although many previous studies have analyzed neuroblastoma stem cells and their therapeutic targeting, this topic appears still open to novel investigations. Here we found that neurospheres derived from neuroblastoma stem-like cells showed a homogeneous staining for several key nucleolar proteins, such as Nucleolin, Nucleophosmin-1, Glypican-2 and PES-1. We investigated the effects of Roniciclib (BAY 1000394), an anticancer stem cells agent, on neurospheres and on an orthotopic neuroblastoma mouse model, discovering an impressive inhibition of tumor growth and indicating good chances for the use of Roniciclib in vivo. We demonstrated that Roniciclib is not only a Wnt/β-catenin signaling inhibitor, but also a nucleolar stress inducer, revealing a possible novel mechanism underlying Roniciclib-mediated repression of cell proliferation. Furthermore, we found that high expression of Nucleophosmin-1 correlates with patients’ short survival. The co-expression of several stem cell surface antigens such as CD44v6 and CD114, together with the nucleolar markers here described, extends new possibilities to isolate undifferentiated subpopulations from neuroblastoma and identify new targets for the treatment of this childhood malignancy.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy. .,Unità di Genetica Medica, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| |
Collapse
|
21
|
Kıyga E, Şengelen A, Adıgüzel Z, Önay Uçar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep 2020; 47:4957-4967. [PMID: 32638319 DOI: 10.1007/s11033-020-05641-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
High expression of heat shock proteins (Hsp) in breast cancer has been closely associated with tumor cell proliferation and thus a poor clinical outcome. Quercetin, a good Hsp inhibitor as a dietary flavonoid, possesses anticarcinogenic properties. Although there are many studies on the effects of quercetin on Hsp levels in human breast cancer cells, research on elucidation of its molecular mechanism continues. Herein, we aimed to investigate the effect of quercetin on Hsp levels and whether quercetin is a suitable therapeutic for two breast cancer cell lines (MCF-7 and MDA-MB-231) representing breast tumors which differed in hormone receptor, aggressiveness and treatment responses. To examine the response to high and low doses of quercetin, the cells were treated with three doses of quercetin (10, 25 and 100 μM) determined by MTT. The effects of quercetin on Hsp levels, apoptosis and DNA damage were examined by western blot analysis, caspase activity assay, comet assay and microscopy in human breast cancer cells. Compared to MDA-MB231 cells, MCF-7 cells were more affected by quercetin treatments. Quercetin effectively suppressed the expression of Hsp27, Hsp70 and Hsp90. While quercetin did not induce DNA damage, it triggered apoptosis at high levels. Although an increase in NF-κB levels is observed in the cells exposed to quercetin, the net result is the anticancer effect in case of Hsp depletion and apoptosis induction. Taken together our findings suggested that quercetin can be an effective therapeutic agent for breast cancer therapy regardless of the presence or absence of hormone receptors.
Collapse
Affiliation(s)
- Ezgi Kıyga
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Zelal Adıgüzel
- Basic Medical Sciences Department of Molecular Biology and Genetics, School of Medicine, Koç University, Istanbul, Turkey
| | - Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
22
|
Nuclear localization of a novel calpain-2 mediated junctophilin-2 C-terminal cleavage peptide promotes cardiomyocyte remodeling. Basic Res Cardiol 2020; 115:49. [PMID: 32592107 PMCID: PMC10113426 DOI: 10.1007/s00395-020-0807-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Patients with HF exhibit a loss of junctophilin-2 (JPH2), a structural protein critical in forming junctional membrane complexes in which excitation-contraction takes place. Several mechanisms have been proposed to mediate the loss of JPH2, one being cleavage by the calcium-dependent protease calpain. The downstream mechanisms underlying HF progression after JPH2 cleavage are presently poorly understood. In this study, we used Labcas to bioinformatically predict putative calpain cleavage sites on JPH2. We identified a cleavage site that produces a novel C-terminal JPH2 peptide (JPH2-CTP) using several domain-specific antibodies. Western blotting revealed elevated JPH2-CTP levels in hearts of patients and mice with HF, corresponding to increased levels of calpain-2. Moreover, immunocytochemistry demonstrated nuclear localization of JPH2-CTP within ventricular myocytes isolated from a murine model of pressure overload-induced HF as well as rat ventricular myocytes treated with isoproterenol. Nuclear localization of JPH2-CTP and cellular remodeling were abrogated by a genetic mutation of the nuclear localization sequence within JPH2-CTP. Taken together, our studies identified a novel C-terminal fragment of JPH2 (JPH2-CTP) generated by calpain-2 mediated cleavage which localizes within the cardiomyocyte nucleus during HF. Blocking nuclear localization of JPH2-CTP protects cardiomyocytes from isoproterenol-induced hypertrophy in vitro. Future in vivo studies of the nuclear role of JPH2-CTP may reveal a causal association with adverse remodeling during HF and establish CTP as a therapeutic target.
Collapse
|
23
|
Makhov P, Uzzo RG, Tulin AV, Kolenko VM. Histone-dependent PARP-1 inhibitors: A novel therapeutic modality for the treatment of prostate and renal cancers. Urol Oncol 2020; 39:312-315. [PMID: 32402770 DOI: 10.1016/j.urolonc.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Clinical interest in poly(ADP-ribose) polymerase 1 (PARP-1) has increased over the past decade with the recognition of its roles in transcription regulation, DNA repair, epigenetic bookmarking, and chromatin restructuring. A number of PARP-1 inhibitors demonstrating clinical efficacy against tumors of various origins have emerged in recent years. These inhibitors have been essentially designed as nicotinamide adenine dinucleotide (NAD+) mimetics. However, because NAD+ is utilized by many enzymes other than PARP-1, NAD+ competitors tend to produce certain off-target effects. To overcome the limitation of NAD-like PARP-1 inhibitors, we have developed a new class of PARP-1 inhibitors that specifically targets the histone-dependent route of PARP-1 activation, a mechanism of activation that is unique to PARP-1. Novel histone-dependent inhibitors are highly specific for PARP-1 and demonstrate promising in vitro and in vivo efficacy against prostate and renal tumors. Our findings suggest that novel PARP-1 inhibitors have strong therapeutic potential for the treatment of urological tumors.
Collapse
Affiliation(s)
- Peter Makhov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Robert G Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | | | | |
Collapse
|
24
|
Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res 2019; 152:104615. [PMID: 31881271 DOI: 10.1016/j.phrs.2019.104615] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone mainly secreted from enteroendocrine L cells. GLP-1 and its receptor are also expressed in the brain. GLP-1 signaling has pivotal roles in regulating neuroinflammation and memory function, but it is unclear how GLP-1 improves memory function by regulating neuroinflammation. Here, we demonstrated that GLP-1 enhances neural structure by inhibiting lipopolysaccharide (LPS)-induced inflammation in microglia with the effects of GLP-1 itself on neurons. Inflammatory secretions of BV-2 microglia by LPS aggravated mitochondrial function and cell survival, as well as neural structure in Neuro-2a neurons. In inflammatory condition, GLP-1 suppressed the secretion of tumor necrosis factor-alpha (TNF-α)-associated cytokines and chemokines in BV-2 microglia and ultimately enhanced neurite complexity (neurite length, number of neurites from soma, and secondary branches) in Neuro-2a neurons. We confirmed that GLP-1 improves neurite complexity, dendritic spine morphogenesis, and spine development in TNF-α-treated primary cortical neurons based on altered expression levels of the factors related to neurite growth and spine morphology. Given that our data that GLP-1 itself enhances neurite complexity and spine morphology in neurons, we suggest that GLP-1 has a therapeutic potential in central nervous system diseases.
Collapse
|
25
|
Wang C, Mbalaviele G. Role of APD-Ribosylation in Bone Health and Disease. Cells 2019; 8:cells8101201. [PMID: 31590342 PMCID: PMC6829334 DOI: 10.3390/cells8101201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The transfer of adenosine diphosphate (ADP)-ribose unit(s) from nicotinamide adenine dinucleotide (NAD+) to acceptor proteins is known as ADP-ribosylation. This post-translational modification (PTM) unavoidably alters protein functions and signaling networks, thereby impacting cell behaviors and tissue outcomes. As a ubiquitous mechanism, ADP-ribosylation affects multiple tissues, including bones, as abnormal ADP-ribosylation compromises bone development and remodeling. In this review, we describe the effects of ADP-ribosylation in bone development and maintenance, and highlight the underlying mechanisms.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Koirala N, Das D, Fayazzadeh E, Sen S, McClain A, Puskas JE, Drazba JA, McLennan G. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. J Biomed Mater Res A 2019; 107:2522-2535. [PMID: 31334591 DOI: 10.1002/jbm.a.36758] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022]
Abstract
Targeted therapies provide increased efficiency for the detection and treatment of cancer with reduced side effects. Folate receptor (alpha subunit) is overexpressed in multiple tumors including liver cancer. In this study, we evaluated the specificity and toxicity of a folic acid-containing drug delivery vehicle (DDV) in a hepatocellular carcinoma (HCC) model. The DDV was prepared with two units each of folic acid (FA) and fluorescein isothiocyanate (FITC) molecules and conjugated to a central poly (ethylene glycol) (PEG) core via a modified chemo-enzymatic synthetic process. Rat hepatoma (N1S1) and human monocytic (U937) cell lines were used for cell culture-based assays and tested for DDV uptake and toxicity. Folate receptor expressions in liver tissues and cell lines were verified using standard immunohistochemistry techniques. Rat HCC model was used for in vivo assessment. The DDV was injected via intra-arterial or intravenous methods and imaged with IVIS spectrum in vivo imaging system. Strong signals of FITC in the liver tumor region correlated to targeted DDV uptake. The use of PEG enhanced water-solubility and provided flexibility for the interaction of FA ligands with multiple cell surface folate receptors that resulted in increased specific uptake. Our study suggested that PEG incorporation and folate targeting via intra-arterial approach is an efficient strategy for targeted delivery in HCC therapy.
Collapse
Affiliation(s)
- Nischal Koirala
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ehsan Fayazzadeh
- Division of Vascular and Interventional Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sanghamitra Sen
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio
| | - Andrew McClain
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio
| | - Judit E Puskas
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio
| | - Judith A Drazba
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gordon McLennan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Division of Vascular and Interventional Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
27
|
Fan Y, Yan G, Liu F, Rong J, Ma W, Yang D, Yu Y. Potential role of poly (ADP-ribose) polymerase in delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Exp Ther Med 2019; 17:1290-1299. [PMID: 30680005 PMCID: PMC6327579 DOI: 10.3892/etm.2018.7073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/14/2018] [Indexed: 01/13/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) serves a key role in several neurological disorders, however, the specific role of PARP in delayed cerebral vasospasm (DCVS) following subarachnoid hemorrhage (SAH) remains unclear. The present study was conducted to clarify the possible mechanism of PARP in DCVS with the treatment of 3-aminobenzamide (3-AB), a PARP inhibitor. In the preliminary experiment, an internal carotid artery puncture SAH model, a cisterna magna double injection SAH model and prechiasmatic cistern single injection SAH model were compared with respect to mortality and neurobehavioral test results. The prechiasmatic cistern single injection SAH model was chosen to induce DCVS in the formal experiment. In the formal experiment, a total of 96 Sprague Dawley rats were randomly allocated into the sham group, the SAH group and the SAH+3-AB group and then each group was further subdivided into days 3, 5, 7 and 14 post-SAH subgroups (n=8 for each subgroup). The prechiasmatic cistern single injection SAH model was established to induce DCVS. Neurobehavioral testing and HE staining were conducted to evaluate the degree of cerebral vasospasm. PARP activity was assessed by ELISA and immunohistochemistry. An electrophoretic mobility shift assay was used to detect nuclear factor (NF)-κB DNA-binding activity. The expression of monocyte chemotactic protein 1 (MCP-1) and C-reactive protein (CRP) were measured by western blotting. Cerebral vasospasm occurred following SAH and became most severe on around day 7 post-SAH. NF-κB activity, PARP activity, the expression of MCP-1 and CRP exhibited a similar time course to cerebral vasospasm. Treatment with 3-AB alleviated the degree of cerebral vasospasm. NF-κB activity, PARP activity and the expression of MCP-1 and CRP were also suppressed by 3-AB treatment. In conclusion, PARP may serve an important role in regulating the inflammatory response and ultimately contribute to DCVS. Therefore 3-AB may be a potential therapeutic agent for DCVS.
Collapse
Affiliation(s)
- Yameng Fan
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ge Yan
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Furong Liu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Rong
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenxia Ma
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Danrong Yang
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
28
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
29
|
Salucci S, Burattini S, Buontempo F, Orsini E, Furiassi L, Mari M, Lucarini S, Martelli AM, Falcieri E. Marine bisindole alkaloid: A potential apoptotic inducer in human cancer cells. Eur J Histochem 2018; 62:2881. [PMID: 29943949 PMCID: PMC6038113 DOI: 10.4081/ejh.2018.2881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Marine organisms such as corals, sponges and tunicates produce active molecules which could represent a valid starting point for new drug development processes. Among the various structural classes, the attention has been focused on 2,2-bis(6-bromo-3-indolyl) ethylamine, a marine alkaloid which showed a good anticancer activity against several tumor cell lines. Here, for the first time, the mechanisms of action of 2,2-bis(6-bromo-3-indolyl) ethylamine have been evaluated in a U937 tumor cell model. Morpho-functional and molecular analyses, highlighting its preferred signaling pathway, demonstrated that apoptosis is the major death response induced by this marine compund. Chromatin condensation, micronuclei formation, blebbing and in situ DNA fragmentation, occurring through caspase activation (extrinsic and intrinsic pathways), were observed. In particular, the bisindole alkaloid induces a mitochondrial involvement in apoptosis machinery activation with Blc-2/Bcl-x down-regulation and Bax up-regulation. These findings demonstrated that 2,2-bis(6-bromo-3-indolyl) ethylamine alkaloid-induced apoptosis is regulated by the Bcl-2 protein family upstream of caspase activation.
Collapse
Affiliation(s)
- Sara Salucci
- University of Urbino, Department of Biomolecular Sciences.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Methotrexate sensitizes drug-resistant metastatic melanoma cells to BRAF V600E inhibitors dabrafenib and encorafenib. Oncotarget 2018; 9:13324-13336. [PMID: 29568360 PMCID: PMC5862581 DOI: 10.18632/oncotarget.24341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
Acquired resistance of metastatic melanoma (MM) tumors to BRAF V600E inhibitors (BRAFi’s) is commonplace in the clinic. Habitual relapse of patients contributes to <20% 5-year survival rates in MM. We previously identified serine synthesis as a critical detrminant of late-stage cancer cell resistance to BRAFi’s. Pre-treatment with DNA damaging agent gemcitabine (a nucleoside analog) re-sensitized drug-resistant cancer cells to BRAFi’s dabrafenib and vemurafenib. Importantly, the combination treatments were effective against BRAF wild type cancer cells potentially expanding the clinical reach of BRAFi’s. In this study, we identify the antifolate methotrexate (MTX) as a sensitizer of acquired- and intrinsically-resistant MM cells to BRAFi’s dabrafenib and encorafenib. We identify a novel, positive correlation between dabrafenib treatments and repair delay of MTX induced single-strand DNA (ssDNA) breaks. Cells arrest in G1 phase following simultaneous MTX + dabrafenib treatments and eventually die via apoptosis. Importantly, we identify RAS codon 12 activating mutations as prognostic markers for MTX + BRAFi treatment efficacy. We describe a method of killing drug-resistant MM cells that if translated has the potential to improve MM patient survival.
Collapse
|
31
|
Gao Y, Wang Z, He W, Ma W, Ni X. Mild hypothermia protects neurons against oxygen glucose deprivation via poly (ADP-ribose) signaling. J Matern Fetal Neonatal Med 2017; 32:1633-1639. [PMID: 29278964 DOI: 10.1080/14767058.2017.1413548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypothermia is a neuroprotective mechanism that has been validated for use in alleviating neonatal hypoxic-ischemic (HI) brain injury. Nevertheless, it is unclear whether poly (ADP-ribose) (PAR) signaling is involved in hypothermia-induced neuroprotection. In this study, we investigated whether mild hypothermia rescues oxygen glucose deprivation (OGD)-induced cell death by modifying PAR-relative protein expression, such as AIF, PARP-1, and PAR polymer, in primary-cultured hippocampal neurons. METHODS We analyzed neuronal morphology and related protein expression of PAR signaling after OGD followed by mild hypothermia in primary-cultured newborn hippocampal neurons. RESULTS Hypothermic treatment resulted in improved neuronal viability and alleviated DNA damage. Results from the protein assay showed that hypothermia attenuated nuclear translocation of apoptosis-inducing factor (AIF), inhibited overactivation of poly(ADP-ribose) polymerase-1 (PARP-1), and decreased production of PAR polymer induced by PARP-1 activation after OGD. CONCLUSIONS These results showed that mild hypothermia partially protects immature hippocampal neurons against OGD injury in part by interfering with the PAR signaling pathway.
Collapse
Affiliation(s)
- Yubo Gao
- a Department of Anaesthesiology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Zhihua Wang
- a Department of Anaesthesiology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Weikun He
- a Department of Anaesthesiology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Wenjing Ma
- a Department of Anaesthesiology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Xinli Ni
- a Department of Anaesthesiology , General Hospital of Ningxia Medical University , Yinchuan , China
| |
Collapse
|
32
|
Peng M, Yang M, Ding Y, Yu L, Deng Y, Lai W, Hu Y. Mechanism of endogenous digitalis-like factor‑induced vascular endothelial cell damage in patients with severe preeclampsia. Int J Mol Med 2017; 41:985-994. [PMID: 29251320 DOI: 10.3892/ijmm.2017.3316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Although endogenous digitalis‑like factor (EDLF) is associated with the development of various physical disorders, the role in preeclampsia remains unclear. This study investigated the effects of EDLF on vascular endothelial cell damage in patients with preeclampsia and the potential mechanisms. From July 2014 to July 2015, 120 singleton pregnancy cases underwent a prenatal examination, inpatient delivery and had normal blood pressure were included in the study, either as patients with severe preeclampsia or the control patients. Serum EDLF levels were compared in these two groups, and an in vitro hypoxic trophocyte‑induced vascular endothelial cell damage model was established to explore the changes in hypoxic trophocyte EDLF level and the subsequent effects on human umbilical vein endothelial cells (HUVECs). Nuclear factor‑κB (NF‑κB) p65 gene expression was silenced in hypoxic trophocytes, and EDLF levels and HUVEC damage were subsequently assessed. Serum EDLF levels were significantly higher in the severe preeclampsia cases than in the controls at the same gestational week (P<0.001). EDLF levels in hypoxic trophocytes increased with the increasing co‑culture duration. Damage to the biofunctions of HUVECs co‑cultured with hypoxic trophocytes also increased with co‑culture duration. However, silencing of NF‑κB p65 in the hypoxic trophocytes reduced the EDLF levels. Annexin A2 was highly expressed in HUVECs, and no biofunctions were significantly damaged (P<0.05) compared with the group without receiving NF‑κB p65 silencing. Serum EDLF levels were significantly higher in patients with severe preeclampsia compared with the controls. The results of the current study indicate that NF‑κB p65 has a role in regulating EDLF production in hypoxic trophocytes.
Collapse
Affiliation(s)
- Mei Peng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yali Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weisi Lai
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Hu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
33
|
Andreucci M, Faga T, Pisani A, Serra R, Russo D, De Sarro G, Michael A. Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells. J Cell Physiol 2017; 233:4116-4125. [PMID: 29044520 DOI: 10.1002/jcp.26213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Antonio Pisani
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Domenico Russo
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences (Pharmacology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
34
|
Lucarini L, Durante M, Lanzi C, Pini A, Boccalini G, Calosi L, Moroni F, Masini E, Mannaioni G. HYDAMTIQ, a selective PARP-1 inhibitor, improves bleomycin-induced lung fibrosis by dampening the TGF-β/SMAD signalling pathway. J Cell Mol Med 2016; 21:324-335. [PMID: 27704718 PMCID: PMC5264150 DOI: 10.1111/jcmm.12967] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/05/2016] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a severe disease characterized by excessive myofibroblast proliferation, extracellular matrix and fibrils deposition, remodelling of lung parenchyma and pulmonary insufficiency. Drugs able to reduce disease progression are available, but therapeutic results are unsatisfactory; new and safe treatments are urgently needed. Poly(ADP‐ribose) polymerases‐1 (PARP‐1) is an abundant nuclear enzyme involved in key biological processes: DNA repair, gene expression control, and cell survival or death. In liver and heart, PARP‐1 activity facilitates oxidative damage, collagen deposition and fibrosis development. In this study, we investigated the effects of HYDAMTIQ, a potent PARP‐1 inhibitor, in a murine model of lung fibrosis. We evaluated the role of PARP on transforming growth factor‐β (TGF‐β) expression and TGF‐β/SMAD signalling pathway in lungs. Mice were intratracheally injected with bleomycin and then treated with either vehicle or different doses of HYDAMTIQ for 21 days. Airway resistance to inflation and lung static compliance, markers of lung stiffness, were assayed. Histochemical and biochemical parameters to evaluate TGF‐β/SMAD signalling pathway with alpha‐smooth muscle actin (αSMA) deposition and the levels of a number of inflammatory markers (tumour necrosis factor‐α, interleukin‐1β, iNOS and COX‐2) were performed. Bleomycin administration increased lung stiffness. It also increased lung PARP activity, TGF‐β levels, pSMAD3 expression, αSMA deposition and content of inflammatory markers. HYDAMTIQ attenuated all the above‐mentioned physiological, biochemical and histopathological markers. Our findings support the proposal that PARP inhibitors could have a therapeutic potential in reducing the progression of signs and symptoms of the disease by decreasing TGF‐β expression and the TGF‐β/SMAD transduction pathway.
Collapse
Affiliation(s)
- Laura Lucarini
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mariaconcetta Durante
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cecilia Lanzi
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Giulia Boccalini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychiatry, Drug Area and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
36
|
Luo Q, Li Y, Lai Y, Zhang Z. The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells. J Toxicol Sci 2016; 40:349-63. [PMID: 25972196 DOI: 10.2131/jts.40.349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The therapeutic efficacy of arsenic trioxide (ATO) for treatments of solid tumors is restricted by its drug resistance and chemotoxicity. In this study, we investigated ATO sensitization and detoxification effect of the Poly (ADP ribose) polymerase-1 (PARP-1) inhibitor 4-Amino-1,8-naphthalimide (4AN) in the hepatocellular carcinoma cell line HepG2. We firstly reported that ATO treatment induced the activation of Nuclear factor of κB (NF-κB) and its downstream anti-apoptosis and pro-inflammatory effectors in a PARP-1-dependent manner and thus conferred HepG2 cells with ATO resistance and toxicity. 4AN significantly suppressed the ATO-induced NF-κB activation, which promotes the apoptotic response and alleviates the inflammatory reaction induced by ATO, resulting in sensitization and detoxification against ATO. We also demonstrated that the ATO-induced activation of PARP-1 and NF-κB was closely associated with the oxidative DNA damage mediated by the generated reactive oxygen species (ROS). Furthermore, the attenuation of ATO-induced ROS and the resulting oxidative DNA damage by N-acetyl-L-cysteine (NAC), a potent antioxidant, significantly reduced the activation of PARP-1 and NF-κB in ATO-treated cells. Our study provides novel insights into the mechanism of the PARP-1-mediated NF-κB signaling pathway in ATO resistance and toxicity in anticancer treatments. This study also highlights the application potential of PARP-1 inhibitors in ATO-based anti-cancer treatments and in prevention of NF-κB-mediated therapeutic resistance and toxicity.
Collapse
Affiliation(s)
- Qingying Luo
- Department of Environmental Health, West China School of Public Health, Sichuan University
| | | | | | | |
Collapse
|
37
|
Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40. [PMID: 26122185 DOI: 10.1038/nrclinonc.2015.120] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| | - William H McBride
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| |
Collapse
|
38
|
Qu C, Bonar SL, Hickman-Brecks CL, Abu-Amer S, McGeough MD, Peña CA, Broderick L, Yang C, Grimston SK, Kading J, Abu-Amer Y, Novack DV, Hoffman HM, Civitelli R, Mbalaviele G. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J 2014; 29:1269-79. [PMID: 25477279 DOI: 10.1096/fj.14-264804] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/13/2014] [Indexed: 11/11/2022]
Abstract
Activating-mutations in NOD-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) cause neonatal-onset multisystem inflammatory disease. However, the ontogeny of skeletal anomalies in this disorder is poorly understood. Mice globally expressing the D301N mutation in Nlrp3 (D303N in human) model the human phenotype, including systemic inflammation and skeletal deformities. To gain insights into the skeletal manifestations, we generated mice in which the expression of D301N Nlrp3 (Nlrp3( D301N)) is restricted to myeloid cells. These mice exhibit systemic inflammation and severe osteopenia (∼ 60% lower bone mass) similar to mice globally expressing the knock-in mutation, consistent with the paradigm of innate immune-driven cryopyrinopathies. Because systemic inflammation may indirectly affect bone homeostasis, we engineered mice in which Nlrp3( D301N) is expressed specifically in osteoclasts, the cells that resorb bone. These mice also develop ∼ 50% lower bone mass due to increased osteolysis, but there is no systemic inflammation and no change in osteoclast number. Mechanistically, aside from its role in IL-1β maturation, Nlrp3( D301N) expression enhances osteoclast bone resorbing ability through reorganization of actin cytoskeleton while promoting the degradation of poly(ADP-ribose) polymerase 1, an inhibitor of osteoclastogenesis. Thus, NLRP3 inflammasome activation is not restricted to the production of proinflammatory mediators but also leads to cytokine-autonomous responses.
Collapse
Affiliation(s)
- Chao Qu
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Sheri L Bonar
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Cynthia L Hickman-Brecks
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Samer Abu-Amer
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Matthew D McGeough
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Carla A Peña
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Lori Broderick
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Chang Yang
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Susan K Grimston
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Jacqueline Kading
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Yousef Abu-Amer
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Deborah V Novack
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Hal M Hoffman
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Roberto Civitelli
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| | - Gabriel Mbalaviele
- *Division of Bone and Mineral Diseases and Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; and Division of Allergy, Immunology, and Rheumatology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|