1
|
Huang T, Xu Z, Xu A, Soteyome T, Li Y, Yuan L, Long L, Liu J. In-depth comparative pathogenome, virulome, and resistome analysis of an extensive drug resistant Ralstonia mannitolilytica strain isolated from blood. Microb Pathog 2024; 196:106969. [PMID: 39306054 DOI: 10.1016/j.micpath.2024.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Ralstonia mannitolilytica is an global opportunistic pathogen responsible for various diseases. In this study, we reported the genome of a R. mannitolilytica isolate responsible for bacteremia in an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS Bacterial identification was performed with a Vitek2™ Automated System and 16S rRNA sequencing with BLASTn against the Non-Redundant Protein Sequence (Nr) database. Genome sequencing and analysis were performed using PacBio RS II sequencer, Hierarchical Genome Assembly Process assembly, as well as multiple annotation databases to better understand the innate features. Antibiotic resistance genes and virulence factors were specifically identified through Antibiotic Resistance Genes database and Virulence Factors of Pathogenic Bacteria databases. RESULTS The complete genome sequence was assembled into two chromosomes with 3,495,817 bp and 1,342,871 bp in length and GC% of 65.37 % and 66.43 %, respectively. The two chromosomes were fully annotated. In chromosome 1 and 2, 19 and 14 antibiotic resistant genes and 48 and 55 virulence factors were predicted, respectively. Specifically, beta-lactam resistance genes blaOXA-443, blaOXA-444 were acquired. CONCLUSIONS This study aids in the understanding of the innate features of R. mannitolilytica in AECOPD.
Collapse
Affiliation(s)
- Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou, 510730, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yu Li
- Department of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Ling Long
- Computer Academy of Guangdong, Guangzhou, 510033, China
| | - Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| |
Collapse
|
2
|
Minamino T, Kinoshita M, Namba K. Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Front Microbiol 2022; 13:864178. [PMID: 35602071 PMCID: PMC9114704 DOI: 10.3389/fmicb.2022.864178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Most motile bacteria utilize the flagellar type III secretion system (fT3SS) to construct the flagellum, which is a supramolecular motility machine consisting of basal body rings and an axial structure. Each axial protein is translocated via the fT3SS across the cytoplasmic membrane, diffuses down the central channel of the growing flagellar structure and assembles at the distal end. The fT3SS consists of a transmembrane export complex and a cytoplasmic ATPase ring complex with a stoichiometry of 12 FliH, 6 FliI and 1 FliJ. This complex is structurally similar to the cytoplasmic part of the FOF1 ATP synthase. The export complex requires the FliH12-FliI6-FliJ1 ring complex to serve as an active protein transporter. The FliI6 ring has six catalytic sites and hydrolyzes ATP at an interface between FliI subunits. FliJ binds to the center of the FliI6 ring and acts as the central stalk to activate the export complex. The FliH dimer binds to the N-terminal domain of each of the six FliI subunits and anchors the FliI6-FliJ1 ring to the base of the flagellum. In addition, FliI exists as a hetero-trimer with the FliH dimer in the cytoplasm. The rapid association-dissociation cycle of this hetero-trimer with the docking platform of the export complex promotes sequential transfer of export substrates from the cytoplasm to the export gate for high-speed protein transport. In this article, we review our current understanding of multiple roles played by the flagellar cytoplasmic ATPase complex during efficient flagellar assembly.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,RIKEN SPring-8 Center and Center for Biosystems Dynamics Research, Osaka, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Minamino T, Morimoto YV, Kinoshita M, Namba K. Multiple Roles of Flagellar Export Chaperones for Efficient and Robust Flagellar Filament Formation in Salmonella. Front Microbiol 2021; 12:756044. [PMID: 34691007 PMCID: PMC8527033 DOI: 10.3389/fmicb.2021.756044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
FlgN, FliS, and FliT are flagellar export chaperones specific for FlgK/FlgL, FliC, and FliD, respectively, which are essential component proteins for filament formation. These chaperones facilitate the docking of their cognate substrates to a transmembrane export gate protein, FlhA, to facilitate their subsequent unfolding and export by the flagellar type III secretion system (fT3SS). Dynamic interactions of the chaperones with FlhA are thought to determine the substrate export order. To clarify the role of flagellar chaperones in filament assembly, we constructed cells lacking FlgN, FliS, and/or FliT. Removal of either FlgN, FliS, or FliT resulted in leakage of a large amount of unassembled FliC monomers into the culture media, indicating that these chaperones contribute to robust and efficient filament formation. The ∆flgN ∆fliS ∆fliT (∆NST) cells produced short filaments similarly to the ∆fliS mutant. Suppressor mutations of the ∆NST cells, which lengthened the filament, were all found in FliC and destabilized the folded structure of FliC monomer. Deletion of FliS inhibited FliC export and filament elongation only after FliC synthesis was complete. We propose that FliS is not involved in the transport of FliC upon onset of filament formation, but FliS-assisted unfolding of FliC by the fT3SS becomes essential for its rapid and efficient export to form a long filament when FliC becomes fully expressed in the cytoplasm.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,RIKEN SPring-8 Center and Center for Biosystems Dynamics Research, Suita, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Protein Export via the Type III Secretion System of the Bacterial Flagellum. Biomolecules 2021; 11:biom11020186. [PMID: 33572887 PMCID: PMC7911332 DOI: 10.3390/biom11020186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The bacterial flagellum and the related virulence-associated injectisome system of pathogenic bacteria utilize a type III secretion system (T3SS) to export substrate proteins across the inner membrane in a proton motive force-dependent manner. The T3SS is composed of an export gate (FliPQR/FlhA/FlhB) located in the flagellar basal body and an associated soluble ATPase complex in the cytoplasm (FliHIJ). Here, we summarise recent insights into the structure, assembly and protein secretion mechanisms of the T3SS with a focus on energy transduction and protein transport across the cytoplasmic membrane.
Collapse
|
5
|
In Vitro Autonomous Construction of the Flagellar Axial Structure in Inverted Membrane Vesicles. Biomolecules 2020; 10:biom10010126. [PMID: 31940802 PMCID: PMC7022808 DOI: 10.3390/biom10010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a filamentous organelle extending from the cell surface. The axial structure of the flagellum consists of the rod, hook, junction, filament, and cap. The axial structure is formed by axial component proteins exported via a specific protein export apparatus in a well-regulated manner. Although previous studies have revealed the outline of the flagellar construction process, the mechanism of axial structure formation, including axial protein export, is still obscure due to difficulties in direct observation of protein export and assembly in vivo. We recently developed an in vitro flagellar protein transport assay system using inverted membrane vesicles (IMVs) and succeeded in reproducing the early stage of flagellar assembly. However, the late stage of the flagellar formation process remained to be examined in the IMVs. In this study, we showed that the filament-type proteins are transported into the IMVs to produce the filament on the hook inside the IMVs. Furthermore, we provide direct evidence that coordinated flagellar protein export and assembly can occur at the post-translational level. These results indicate that the ordered construction of the entire flagellar structure can be regulated by only the interactions between the protein export apparatus, the export substrate proteins, and their cognate chaperones.
Collapse
|
6
|
Xu X, Zhang H, Huang Y, Zhang Y, Wu C, Gao P, Teng Z, Luo X, Peng X, Wang X, Wang D, Pu J, Zhao H, Lu X, Lu S, Ye C, Dong Y, Lan R, Xu J. Beyond a Ribosomal RNA Methyltransferase, the Wider Role of MraW in DNA Methylation, Motility and Colonization in Escherichia coli O157:H7. Front Microbiol 2019; 10:2520. [PMID: 31798540 PMCID: PMC6863780 DOI: 10.3389/fmicb.2019.02520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
MraW is a 16S rRNA methyltransferase and plays a role in the fine-tuning of the ribosomal decoding center. It was recently found to contribute to the virulence of Staphylococcus aureus. In this study, we examined the function of MraW in Escherichia coli O157:H7 and found that the deletion of mraW led to decreased motility, flagellar production and DNA methylation. Whole-genome bisulfite sequencing showed a genome wide decrease of methylation of 336 genes and 219 promoters in the mraW mutant including flagellar genes. The methylation level of flagellar genes was confirmed by bisulfite PCR sequencing. Quantitative reverse transcription PCR results indicated that the transcription of these genes was also affected. MraW was furtherly observed to directly bind to the four flagellar gene sequences by electrophoretic mobility shift assay (EMSA). A common flexible motif in differentially methylated regions (DMRs) of promoters and coding regions of the four flagellar genes was identified. Reduced methylation was correlated with altered expression of 21 of the 24 genes tested. DNA methylation activity of MraW was confirmed by DNA methyltransferase activity assay in vitro and repressed by DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza). In addition, the mraW mutant colonized poorer than wild type in mice. We also found that the expression of mraZ in the mraW mutant was increased confirming the antagonistic effect of mraW on mraZ. In conclusion, mraW was found to be a DNA methylase and have a wide-ranging effect on E. coli O157:H7 including motility and virulence in vivo via genome wide methylation and mraZ antagonism.
Collapse
Affiliation(s)
- Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuan Zhang
- China Institute of Veterinary Drug Control, Haidian, China
| | - Changde Wu
- College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Pengya Gao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhongqiu Teng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaojing Peng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ji Pu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongqing Zhao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangshuang Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
7
|
Minamino T. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiol Lett 2018; 365:4993518. [DOI: 10.1093/femsle/fny117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Inoue Y, Morimoto YV, Namba K, Minamino T. Novel insights into the mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella. Sci Rep 2018; 8:1787. [PMID: 29379125 PMCID: PMC5789064 DOI: 10.1038/s41598-018-20209-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 11/24/2022] Open
Abstract
The FliI ATPase of the flagellar type III protein export apparatus forms the FliH2FliI complex along with its regulator FliH. The FliH2FliI complex is postulated to bring export substrates from the cytoplasm to the docking platform made of FlhA and FlhB although not essential for flagellar protein export. Here, to clarify the role of the FliH2FliI complex in flagellar assembly, we analysed the effect of FliH and FliI deletion on flagellar protein export and assembly. The hook length was not controlled properly in the ∆fliH-fliI flhB(P28T) mutant compared to wild-type cells, whose hook length is controlled to about 55 nm within 10% error. The FlhA(F459A) mutation increased the export level of the hook protein FlgE and the ruler protein FliK by about 10-fold and 3-fold, respectively, and improved the hook length control in the absence of FliH and FliI. However, the ∆fliH-fliI flhB(P28T) flhA(F459A) mutant did not produce flagellar filaments efficiently, and a large amount of flagellin monomers were leaked out into the culture media. Neither the hook length control nor flagellin leakage was affected by the FlhB(P28T) and FlhA(F459A) mutations. We will discuss a hierarchical protein export mechanism of the bacterial flagellum.
Collapse
Affiliation(s)
- Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Recognition and targeting mechanisms by chaperones in flagellum assembly and operation. Proc Natl Acad Sci U S A 2016; 113:9798-803. [PMID: 27528687 DOI: 10.1073/pnas.1607845113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone-substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones.
Collapse
|
11
|
Furukawa Y, Inoue Y, Sakaguchi A, Mori Y, Fukumura T, Miyata T, Namba K, Minamino T. Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone. Mol Microbiol 2016; 102:405-416. [PMID: 27461872 DOI: 10.1111/mmi.13469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
FliS chaperone binds to flagellin FliC in the cytoplasm and transfers FliC to a sorting platform of the flagellar type III export apparatus through the interaction between FliS and FlhA for rapid and efficient protein export during flagellar filament assembly. FliS also suppresses the secretion of an anti-σ factor, FlgM. Loss of FliS results in a short filament phenotype although the expression levels of FliC are increased considerably due to an increase in the secretion level of FlgM. Here to clarify the rate limiting step of FliC export in the absence of FliS, we isolated bypass mutants from a Salmonella ΔfliS mutant. All the bypass mutations were identified in FliC. These bypass mutations increased the export rate of FliC by ca. twofold, allowing the bypass mutant cells to produce longer filaments than the parental ΔfliS cells. Both far-UV CD measurements and limited proteolysis revealed that the bypass mutations significantly destabilize the folded structure of FliC monomer. These results suggest that an unfolding step of FliC limits the export rate of FliC in the ΔfliS mutant, thereby producing short filaments. We propose that FliS promotes FliC docking at the FlhA platform to facilitate subsequent unfolding of FliC.
Collapse
Affiliation(s)
- Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Aya Sakaguchi
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, 602-0893, Japan
| | - Yoko Mori
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kyoto, 602-0893, Japan
| | - Takuma Fukumura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
Sajó R, Tőke O, Hajdú I, Jankovics H, Micsonai A, Dobó J, Kardos J, Vonderviszt F. Structural plasticity of the Salmonella FliS flagellar export chaperone. FEBS Lett 2016; 590:1103-13. [PMID: 27003324 DOI: 10.1002/1873-3468.12149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/11/2022]
Abstract
The Salmonella FliS flagellar export chaperone is a highly α-helical protein. Proteolytic experiments suggest that FliS has a compact core. However, the calorimetric melting profile of FliS does not show any melting transition in the 25-110 °C temperature range. Circular dichroism measurements reveal that FliS is losing its helical structure over a broad temperature range upon heating. These observations indicate that FliS unfolds in a noncooperative way and its native state shows features reminiscent of the molten globule state of proteins possessing substantial structural plasticity. As FliS has several binding partners within the cell, conformational adaptability seems to be an essential requirement to fulfill its multiple roles.
Collapse
Affiliation(s)
- Ráchel Sajó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Orsolya Tőke
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Hajdú
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Hajnalka Jankovics
- Bio-Nanosystems Laboratory, Research Institute for Chemical and Process Engineering, University of Pannonia, Veszprém, Hungary
| | - András Micsonai
- MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Kardos
- MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Vonderviszt
- Bio-Nanosystems Laboratory, Research Institute for Chemical and Process Engineering, University of Pannonia, Veszprém, Hungary.,Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Minamino T. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
]. Nihon Saikingaku Zasshi 2015; 70:351-64. [PMID: 26310179 DOI: 10.3412/jsb.70.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|