1
|
Anwar O, Islam M, Thakur V, Kaur I, Mohmmed A. Defining ER-mitochondria contact dynamics in Plasmodium falciparum by targeting component of phospholipid synthesis pathway, Phosphatidylserine synthase (PfPSS). Mitochondrion 2022; 65:124-138. [PMID: 35623558 DOI: 10.1016/j.mito.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The malaria parasite completes the asexual cycle inside the host erythrocyte, which requires extensive membrane biogenesis for its development and multiplication. Metabolic pathways for the synthesis of membrane phospholipids (PL), including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), are crucial for parasite survival. Here, we have studied the P. falciparum enzyme responsible for PS synthesis, Phosphatidylserine synthase (PfPSS), GFP targeting approach confirmed it to be localized in the parasite ER as well as in ER-protrusions. Detailed high resolution microscopy, using these transgenic parasites expressing PfPSS-GFP, redefined the dynamics of ER during the intraerythrocytic life cycle and its association with the mitochondria. We report for the first time presence of ER-mitochondria contact (ERMC) in Plasmodium; ERMC is formed by PfPSS containing ER-protrusions, which associate with the mitochondria surface throughout the parasite growth cycle. Further, ERMC is found to be stable and refractory to ER and mitochondrial stresses, suggesting that it is formed through strong tethering complexes. PfPSS was found to interact with other major key enzyme involved in PL synthesis, choline/Etn-phosphotransferase (CEPT), which suggest that ER is the major site for PL biosynthesis. Overall, this study defines the morphological organisation of ERMC which mediates PL synthesis/transport in the Plasmodium.
Collapse
Affiliation(s)
- Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
2
|
Mapping PP1c and Its Inhibitor 2 Interactomes Reveals Conserved and Specific Networks in Asexual and Sexual Stages of Plasmodium. Int J Mol Sci 2022; 23:ijms23031069. [PMID: 35162991 PMCID: PMC8835298 DOI: 10.3390/ijms23031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.
Collapse
|
3
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
4
|
Asad M, Yamaryo-Botté Y, Hossain ME, Thakur V, Jain S, Datta G, Botté CY, Mohmmed A. An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum. BMC Biol 2021; 19:159. [PMID: 34380472 PMCID: PMC8359613 DOI: 10.1186/s12915-021-01042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite’s survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. Results Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. Conclusions We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01042-z.
Collapse
Affiliation(s)
- Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Gaurav Datta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India.
| |
Collapse
|
5
|
Sutherland CJ, Henrici RC, Artavanis-Tsakonas K. Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing. FEMS Microbiol Rev 2021; 45:fuaa056. [PMID: 33095255 PMCID: PMC8100002 DOI: 10.1093/femsre/fuaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of the susceptibility of Plasmodium falciparum to the artemisinin family of antimalarial drugs provide a complex picture of partial resistance (tolerance) associated with increased parasite survival in vitro and in vivo. We present an overview of the genetic loci that, in mutant form, can independently elicit parasite tolerance. These encode Kelch propeller domain protein PfK13, ubiquitin hydrolase UBP-1, actin filament-organising protein Coronin, also carrying a propeller domain, and the trafficking adaptor subunit AP-2μ. Detailed studies of these proteins and the functional basis of artemisinin tolerance in blood-stage parasites are enabling a new synthesis of our understanding to date. To guide further experimental work, we present two major conclusions. First, we propose a dual-component model of artemisinin tolerance in P. falciparum comprising suppression of artemisinin activation in early ring stage by reducing endocytic haemoglobin capture from host cytosol, coupled with enhancement of cellular healing mechanisms in surviving cells. Second, these two independent requirements limit the likelihood of development of complete artemisinin resistance by P. falciparum, favouring deployment of existing drugs in new schedules designed to exploit these biological limits, thus extending the useful life of current combination therapies.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Ryan C Henrici
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | | |
Collapse
|
6
|
The Plasmodium falciparum Artemisinin Susceptibility-Associated AP-2 Adaptin μ Subunit is Clathrin Independent and Essential for Schizont Maturation. mBio 2020; 11:mBio.02918-19. [PMID: 32098816 PMCID: PMC7042695 DOI: 10.1128/mbio.02918-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the μ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2μ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2μ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2μ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2μ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the μ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.
Collapse
|
7
|
Cernikova L, Faso C, Hehl AB. Roles of Phosphoinositides and Their binding Proteins in Parasitic Protozoa. Trends Parasitol 2019; 35:996-1008. [PMID: 31615721 DOI: 10.1016/j.pt.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides (or phosphatidylinositol phosphates, PIPs) are low-abundance membrane phospholipids that act, in conjunction with their binding partners, as important constitutive signals defining biochemical organelle identity as well as membrane trafficking and signal transduction at eukaryotic cellular membranes. In this review, we present roles for PIP residues and PIP-binding proteins in endocytosis and autophagy in protist parasites such as Trypanosoma brucei, Toxoplasma gondii, Plasmodium falciparum, Entamoeba histolytica, and Giardia lamblia. Molecular parasitologists with an interest in comparative cell and molecular biology of membrane trafficking in protist lineages beyond the phylum Apicomplexa, along with cell and molecular biologists generally interested in the diversification of membrane trafficking in eukaryotes, will hopefully find this review to be a useful resource.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland; Institute of Cell Biology, University of Bern (BE), Bern, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland.
| |
Collapse
|
8
|
Hillier C, Pardo M, Yu L, Bushell E, Sanderson T, Metcalf T, Herd C, Anar B, Rayner JC, Billker O, Choudhary JS. Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality. Cell Rep 2019; 28:1635-1647.e5. [PMID: 31390575 PMCID: PMC6693557 DOI: 10.1016/j.celrep.2019.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria represents a major global health issue, and the identification of new intervention targets remains an urgent priority. This search is hampered by more than one-third of the genes of malaria-causing Plasmodium parasites being uncharacterized. We report a large-scale protein interaction network in Plasmodium schizonts, generated by combining blue native-polyacrylamide electrophoresis with quantitative mass spectrometry and machine learning. This integrative approach, spanning 3 species, identifies >20,000 putative protein interactions, organized into 600 protein clusters. We validate selected interactions, assigning functions in chromatin regulation to previously unannotated proteins and suggesting a role for an EELM2 domain-containing protein and a putative microrchidia protein as mechanistic links between AP2-domain transcription factors and epigenetic regulation. Our interactome represents a high-confidence map of the native organization of core cellular processes in Plasmodium parasites. The network reveals putative functions for uncharacterized proteins, provides mechanistic and structural insight, and uncovers potential alternative therapeutic targets.
Collapse
Affiliation(s)
- Charles Hillier
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK.
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ellen Bushell
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Colin Herd
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Burcu Anar
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Billker
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden.
| | - Jyoti S Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
9
|
Kibria KMK, Ferdous J, Sardar R, Panda A, Gupta D, Mohmmed A, Malhotra P. A genome-wide analysis of coatomer protein (COP) subunits of apicomplexan parasites and their evolutionary relationships. BMC Genomics 2019; 20:98. [PMID: 30704415 PMCID: PMC6357402 DOI: 10.1186/s12864-019-5463-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023] Open
Abstract
Background Protein secretion is an essential process in all eukaryotes including organisms belonging to the phylum Apicomplexa, which includes many intracellular parasites. The apicomplexan parasites possess a specialized collection of secretory organelles that release a number of proteins to facilitate the invasion of host cells and some of these proteins also participate in immune evasion. Like in other eukaryotes, these parasites possess a series of membrane-bound compartments, namely the endoplasmic reticulum (ER), the intermediate compartments (IC) or vesicular tubular clusters (VTS) and Golgi complex through which proteins pass in a sequential and vectorial fashion. Two sets of proteins; COPI and COPII are important for directing the sequential transfer of material between the ER and Golgi complex. Results Here, using in silico approaches, we identify the components of COPI and COPII complexes in the genome of apicomplexan organisms. The results showed that the COPI and COPII protein complexes are conserved in most apicomplexan genomes with few exceptions. Diversity among the components of COPI and COPII complexes in apicomplexan is either due to the absence of a subunit or due to the difference in the number of protein domains. For example, the COPI epsilon subunit and COPII sec13 subunit is absent in Babesia bovis, Theileria parva, and Theileria annulata genomes. Phylogenetic and domain analyses for all the proteins of COPI and COPII complexes was performed to predict their evolutionary relationship and functional significance. Conclusions The study thus provides insights into the apicomplexan COPI and COPII coating machinery, which is crucial for parasites secretory network needed for the invasion of host cells. Electronic supplementary material The online version of this article (10.1186/s12864-019-5463-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashutosh Panda
- Department of Microbiology, All India Institute of Medical Science, New Delhi, 29, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asif Mohmmed
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawan Malhotra
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
10
|
Clathrin-mediated endocytosis is a candidate entry sorting mechanism for Bombyx mori cypovirus. Sci Rep 2018; 8:7268. [PMID: 29740149 PMCID: PMC5940776 DOI: 10.1038/s41598-018-25677-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Bombyx mori cypovirus (BmCPV), a member of the Reoviridae, specifically infects silkworms and causes extensive economic losses to the sericulture industry. To date, the entry mechanism of BmCPV into cells is unclear. Here we used electron microscopy to study the route of entry of BmCPV into cells, and the results demonstrated that the entry of BmCPV into BmN cells was mediated by endocytosis. Blocking the entry pathway with four endocytosis inhibitors, including dansylcadaverine, chlorpromazine, genistein, and PP2, significantly decreased the infectivity of BmCPV. This indicates that BmCPV enters BmN cells via endocytosis, and that clathrin-mediated sorting is the predominant entry method. After the relative expression levels of clathrin heavy chain (clathrin, GenBank accession No. NM_001142971.1) and the adaptor protein complex-1 gamma subunit AP-1 (AP-1, GenBank accession No. JQ824201.1), which are involved in clathrin-mediated endocytosis, were inhibited by RNA interference or abolishing the functions of clathrin and AP-1 with their corresponding antibodies, the infectivity of BmCPV was reduced significantly, which suggests that clathrin-mediated endocytosis contributed to the entry of BmCPV into cells. Our findings suggest that the clathrin-mediated endocytosis pathway is a candidate for the development of therapeutics for silkworm cytoplasmic polyhedrosis.
Collapse
|
11
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
12
|
Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. mSphere 2018; 3:mSphere00551-17. [PMID: 29299530 PMCID: PMC5750388 DOI: 10.1128/msphere.00551-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
The rhoptry organelle is critical for the invasion of an erythrocyte by the malaria parasite Plasmodium falciparum. Despite their critical roles, the mechanisms behind their biogenesis are still poorly defined. Our earlier work had suggested that the interaction between the glycosylphosphatidylinositol (GPI)-anchored rhoptry-associated membrane antigen (RAMA) and the soluble rhoptry-associated protein 1 was involved in the transport of the latter from the Golgi apparatus to the rhoptry. However, how this protein complex could interact with the intracellular trafficking machinery was unknown at this stage. Here we show that the P. falciparum homologue of the transmembrane protein sortilin-VPS10 interacts with regions of RAMA that are sufficient to target a fluorescent reporter to the rhoptries. These results suggest that P. falciparum sortilin (PfSortilin) could potentially act as the escorter for the transport of rhoptry-destined cargo. IMPORTANCE The malaria parasite is a massive burden in several parts of the world. Worryingly, the parasite has become resistant to several of the drugs commonly used to treat the disease, and at this time, there is no commercial vaccine. It is therefore critical to identify new targets for the development of antimalarials. To survive in the human body, the malaria parasite needs to invade red blood cells. For this, it uses a variety of effectors stored in organelles forming a structure called the apical complex. The mechanisms behind how the parasite generates the apical complex are poorly understood. In this study, we present evidence that a transmembrane protein called sortilin potentially acts as an escorter to transport proteins from the Golgi apparatus to the rhoptries, a component of the apical complex. Our study provides new insight into the biogenesis of a critical structure of the malaria parasite.
Collapse
|
13
|
Chaudhari R, Dey V, Narayan A, Sharma S, Patankar S. Membrane and luminal proteins reach the apicoplast by different trafficking pathways in the malaria parasite Plasmodium falciparum. PeerJ 2017; 5:e3128. [PMID: 28462015 PMCID: PMC5410153 DOI: 10.7717/peerj.3128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF4− and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Vishakha Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Aishwarya Narayan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Venugopal K, Werkmeister E, Barois N, Saliou JM, Poncet A, Huot L, Sindikubwabo F, Hakimi MA, Langsley G, Lafont F, Marion S. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog 2017; 13:e1006331. [PMID: 28430827 PMCID: PMC5415223 DOI: 10.1371/journal.ppat.1006331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/03/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex composed of the four subunits γ, β, μ1, σ1 and interacts with known regulators of clathrin-mediated vesicular budding such as the unique ENTH-domain containing protein, which we named Epsin-like protein (TgEpsL). Disruption of the μ1 subunit resulted in the mis-sorting of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit from the TGN, but also participates in the post-Golgi maturation process of preROP compartments into apically anchored club-shaped mature organelles. For this latter activity, our data indicate a specific functional relationship between TgAP1 and the Rab5A-positive endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the regulation of parasite division. APμ1-depleted parasites undergo normal daughter cell budding and basal complex assembly but fail to segregate at the end of cytokinesis. The phylum Apicomplexa comprises a large group of obligate intracellular parasites of wide human and agricultural significance. Most notable are Plasmodium, the causative agent of malaria, and Toxoplasma gondii, one of the most common human parasites, responsible for disease of the developing fetus and immune-compromised individuals. Apicomplexa are characterized by the presence of an apical complex consisting of secretory organelles named micronemes (MIC) and rhoptries (ROP). MIC and ROP proteins, released upon host cell recognition, are essential for host cell invasion and parasite survival. After invasion, these organelles are neo-synthesized at each parasite replication cycle. In our study, we demonstrate a crucial role for the T. gondii clathrin adaptor complex AP1 in the vesicular transport of neo-synthesized MIC and ROP proteins, thereby regulating mature apical organelle formation. In addition, we unravel an original role for TgAP1 in the late stages of the parasite division process during daughter cell segregation. Therefore, our study provides new insights into key regulatory mechanisms of the vesicular trafficking system essential for host invasion and intracellular survival of Toxoplasma gondii.
Collapse
Affiliation(s)
- Kannan Venugopal
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Elisabeth Werkmeister
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Barois
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Anais Poncet
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Ludovic Huot
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Fabien Sindikubwabo
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Mohamed Ali Hakimi
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes-Sorbonne Paris Cité, France. Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Frank Lafont
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Sabrina Marion
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
15
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Morse D, Webster W, Kalanon M, Langsley G, McFadden GI. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS One 2016; 11:e0158174. [PMID: 27348424 PMCID: PMC4922565 DOI: 10.1371/journal.pone.0158174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/11/2016] [Indexed: 12/17/2022] Open
Abstract
Over-expression of a GFP-PfRab1A fusion protein in Plasmodium falciparum schizonts produces a punctate pattern of fluorescence typical of rhoptries, secretory organelles involved in host cell invasion. The GFP-positive bodies were purified by a combination of differential and density gradient centrifugation and their protein content determined by MS/MS sequencing. Consistent with the GFP rhoptry-like pattern of transgenic parasites, four of the 19 proteins identified have been previously described to be rhoptry-associated and another four are ER or ER-associated proteins. Confirmation that GFP-PfRab1A decorates rhoptries was obtained by its co-localization with Rap1 and Ron4 in late phase schizonts. We conclude that PfRab1A potentially regulates vesicular traffic from the endoplasmic reticulum to the rhoptries in Apicomplexa parasites.
Collapse
Affiliation(s)
- David Morse
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- * E-mail:
| | - Wesley Webster
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ming Kalanon
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, 75014, Paris, France
| | | |
Collapse
|
17
|
Kibria KMK, Hossain MU, Oany AR, Ahmad SAI. Novel insights on ENTH domain-containing proteins in apicomplexan parasites. Parasitol Res 2016; 115:2191-202. [PMID: 26922178 DOI: 10.1007/s00436-016-4961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The phylum Apicomplexa includes a large group of early branching eukaryotes having significant medical and economical importance. The molecular machinery responsible for protein trafficking is poorly understood in these apicomplexans. One of the most important proteins involved in clathrin-mediated protein trafficking is Epsin, which contains ENTH domain, a conserved domain crucial for membrane bending leading to vesicle formation. We undertook homology searching and phylogenetic analyses to produce a rigorously annotated set of Epsin homologs retrieved from diverse apicomplexan genomes. Genomic and phylogenetic comparisons revealed that apicomplexans contain unusual Epsin homologs that are distinct from those observed in mammals and yeast. Although there are four Epsin genes in mammalian system and five in the yeast genome, apicomplexan parasites consist only a single Epsin gene. The apicomplexan Epsin contains the conserved ENTH domain consisting of phosphoinositide (PtdIns)-binding sites which indicate about their functional significance in the formation of vesicles; however, the absence of ubiquitin-interacting motif (UIM) suggests a possible different mechanism for protein trafficking. The existence of dileucine motif in Plasmodium, Cryptosporidum parvum and Eimeria tenella Epsins might solve their functionality while lacking a lot of conserved motifs as this motif is known to interact with different adaptor protein complexes (AP1, AP2 and AP3). Other Epsin homologs are also shown to have different peptide motifs reported for possible interaction with α-ear appendage, γ-ear appendage and EH domain present in different adaptors. Bioinformatic and phylogenetic analyses suggest that the apicomplexan Epsins have unusual functionality from that of the mammalian Epsins. This detailed study may greatly facilitate future molecular cell biological investigation for the role of Epsins in these parasites.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Shah Adil Ishtiyaq Ahmad
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
18
|
Thakur V, Asad M, Jain S, Hossain ME, Gupta A, Kaur I, Rathore S, Ali S, Khan NJ, Mohmmed A. Eps15 homology domain containing protein of Plasmodium falciparum (PfEHD) associates with endocytosis and vesicular trafficking towards neutral lipid storage site. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2856-69. [PMID: 26284889 DOI: 10.1016/j.bbamcr.2015.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 07/19/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, takes up numerous host cytosolic components and exogenous nutrients through endocytosis during the intra-erythrocytic stages. Eps15 homology domain-containing proteins (EHDs) are conserved NTPases, which are implicated in membrane remodeling and regulation of specific endocytic transport steps in eukaryotic cells. In the present study, we have characterized the dynamin-like C-terminal Eps15 homology domain containing protein of P. falciparum (PfEHD). Using a GFP-targeting approach, we studied localization and trafficking of PfEHD in the parasite. The PfEHD-GFP fusion protein was found to be a membrane bound protein that associates with vesicular network in the parasite. Time-lapse microscopy studies showed that these vesicles originate at parasite plasma membrane, migrate through the parasite cytosol and culminate into a large multi-vesicular like structure near the food-vacuole. Co-staining of food vacuole membrane showed that the multi-vesicular structure is juxtaposed but outside the food vacuole. Labeling of parasites with neutral lipid specific dye, Nile Red, showed that this large structure is neutral lipid storage site in the parasites. Proteomic analysis identified endocytosis modulators as PfEHD associated proteins in the parasites. Treatment of parasites with endocytosis inhibitors obstructed the development of PfEHD-labeled vesicles and blocked their targeting to the lipid storage site. Overall, our data suggests that the PfEHD is involved in endocytosis and plays a role in the generation of endocytic vesicles at the parasite plasma membrane, that are subsequently targeted to the neutral lipid generation/storage site localized near the food vacuole.
Collapse
Affiliation(s)
- Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India; Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110 025, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Akanksha Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi 110062, India
| | - Nida J Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110 025, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|