1
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
2
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Harmer JR, Hakopian S, Niks D, Hille R, Bernhardt PV. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Cupriavidus necator. J Am Chem Soc 2023; 145:25850-25863. [PMID: 37967365 DOI: 10.1021/jacs.3c10199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.
Collapse
Affiliation(s)
- Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
4
|
Wiechers H, Kehl A, Hiller M, Eltzner B, Huckemann SF, Meyer A, Tkach I, Bennati M, Pokern Y. Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107491. [PMID: 37301045 DOI: 10.1016/j.jmr.2023.107491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.
Collapse
Affiliation(s)
- H Wiechers
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - B Eltzner
- Research Group Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - S F Huckemann
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany
| | - I Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany.
| | - Y Pokern
- Department of Statistical Science, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Hasanbasri Z, Moriglioni NA, Saxena S. Efficient sampling of molecular orientations for Cu(II)-based DEER on protein labels. Phys Chem Chem Phys 2023; 25:13275-13288. [PMID: 36939213 DOI: 10.1039/d3cp00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Combining rigid Cu(II) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown a priori in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron-nucleus interactions. In this work, we dissect orientational selectivity by generating an in silico sample of Cu(II)-labeled proteins to evaluate pulse excitation in the context of double electron-electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Ho MB, Jodts RJ, Kim Y, McSkimming A, Suess DLM, Hoffman BM. Characterization by ENDOR Spectroscopy of the Iron–Alkyl Bond in a Synthetic Counterpart of Organometallic Intermediates in Radical SAM Enzymes. J Am Chem Soc 2022; 144:17642-17650. [DOI: 10.1021/jacs.2c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madeline B. Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J. Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Youngsuk Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alex McSkimming
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L. M. Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Maity AN, Chen JR, Ke SC. Exploring the mechanism of action of lysine 5,6-aminomutase using EPR and ENDOR spectroscopies. Methods Enzymol 2022; 669:197-228. [PMID: 35644172 DOI: 10.1016/bs.mie.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Radical enzymes orchestrate challenging chemical transformations by devising strategies to tame the highly reactive radical intermediates. Electron paramagnetic resonance (EPR) spectroscopy is the most suitable technique to study various aspects of the radical enzymes. Lysine 5,6-aminomutase (5,6-LAM) is one such radical enzyme and employs coenzyme B12 and pyridoxal 5'-phosphate (PLP) to catalyze the 1,2-amino shift reaction through a radical mechanism. 5,6-LAM accepts either d-lysine or l-β-lysine as the substrate. EPR and electron nuclear double resonance (ENDOR) spectroscopies have played major roles in deciphering the mechanism of action of 5,6-LAM, while density functional theoretical (DFT) computation and synthetic isotopologues have played supporting roles. This comprehensive toolkit has revealed that 5,6-LAM undergoes large-scale conformational movement to bring PLP and coenzyme B12 close together, which allows the reaction to progress. The conformational change also closes the active site, which protects the radical intermediates and enables their transformation to product without unwanted side reactions. The substrate-related radical (S•), which is spin-coupled with Co2+ generated from homolysis of the CoC bond in coenzyme B12, was unequivocally characterized when a substrate analog, 4-thia-l-lysine, and isotopologues of it were reacted with 5,6-LAM. Studies with substrate analogs revealed a unique "odd-even" correlation with opening of the closed state. Moreover, mutagenesis studies identified the contributions that conserved residues in 5,6-LAM make toward binding of the substrate. Further studies with a cofactor analog, PLP-N-oxide, have shed light on various aspects of the mechanism of action of 5,6-LAM.
Collapse
Affiliation(s)
| | - Jun-Ru Chen
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Shyue-Chu Ke
- Department of Physics, National Dong Hwa University, Hualien, Taiwan.
| |
Collapse
|
8
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
9
|
Chen JR, Ke TX, Frey PA, Ke SC. Electron Spin Echo Envelope Modulation Spectroscopy Reveals How Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase Positions the Radical Pair Intermediates and Modulates Their Stabilities for Efficient Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Ru Chen
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Xi Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Perry A. Frey
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Shyue-Chu Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
10
|
Lukoyanov DA, Yang ZY, Dean DR, Seefeldt LC, Raugei S, Hoffman BM. Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H 2 to Achieve N≡N Triple-Bond Activation. J Am Chem Soc 2020; 142:21679-21690. [PMID: 33326225 DOI: 10.1021/jacs.0c07914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen fixation by nitrogenase begins with the accumulation of four reducing equivalents at the active-site FeMo-cofactor (FeMo-co), generating a state (denoted E4(4H)) with two [Fe-H-Fe] bridging hydrides. Recently, photolytic reductive elimination (re) of the E4(4H) hydrides showed that enzymatic re of E4(4H) hydride yields an H2-bound complex (E4(H2,2H)), in a process corresponding to a formal 2-electron reduction of the metal-ion core of FeMo-co. The resulting electron-density redistribution from Fe-H bonds to the metal ions themselves enables N2 to bind with concomitant H2 release, a process illuminated here by QM/MM molecular dynamics simulations. What is the nature of this redistribution? Although E4(H2,2H) has not been trapped, cryogenic photolysis of E4(4H) provides a means to address this question. Photolysis of E4(4H) causes hydride-re with release of H2, generating doubly reduced FeMo-co (denoted E4(2H)*), the extreme limit of the electron-density redistribution upon formation of E4(H2,2H). Here we examine the doubly reduced FeMo-co core of the E4(2H)* limiting-state by 1H, 57Fe, and 95Mo ENDOR to illuminate the partial electron-density redistribution upon E4(H2,2H) formation during catalysis, complementing these results with corresponding DFT computations. Inferences from the E4(2H)* ENDOR results as extended by DFT computations include (i) the Mo-site participates negligibly, and overall it is unlikely that Mo changes valency throughout the catalytic cycle; and (ii) two distinctive E4(4H) 57Fe signals are suggested as associated with structurally identified "anchors" of one bridging hydride, two others with identified anchors of the second, with NBO-analysis further identifying one anchor of each hydride as a major recipient of electrons released upon breaking Fe-H bonds.
Collapse
Affiliation(s)
- Dmitriy A Lukoyanov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biocemistry, Utah State University, Logan, Utah 84322, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Hirscher NA, Arnett CH, Oyala PH, Agapie T. Characterization of Cr-Hydrocarbyl Species via Pulse EPR in the Study of Ethylene Tetramerization Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathanael A. Hirscher
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Moulis JM. Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules 2020; 10:E1584. [PMID: 33233467 PMCID: PMC7700505 DOI: 10.3390/biom10111584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Transition metals interact with a large proportion of the proteome in all forms of life, and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the conditions prevailing in the test tube when studying metal ions and their interactions with various ligands. Indeed, the complex and often changing cellular environment stimulates fast metal-ligand exchange that mostly escapes presently available probing methods. Reducing the complexity of the problem with purified proteins or in model organisms, although useful, is not free from pitfalls and misleading results. These problems arise mainly from the absence of the biosynthetic machinery and accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with metal selectivity, as they do not have a metal-directed quality control system for metalloproteins, and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation, nutrition, and toxicity.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- National Institute of Health and Medical Research, University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| |
Collapse
|
13
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Kapsalis C, Ma Y, Bode BE, Pliotas C. In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity. Biophys J 2020; 119:448-459. [PMID: 32621864 PMCID: PMC7376121 DOI: 10.1016/j.bpj.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis has been used as a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechanosensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two constructs suggest a more compact E. coli MscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed differences within lipids could explain E. coli MscL’s higher tension sensitivity and should be taken into account in extrapolated models used for MscL gating rationalization.
Collapse
Affiliation(s)
- Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Yue Ma
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bela E Bode
- Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, St Andrews, United Kingdom.
| | - Christos Pliotas
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
15
|
Jeschke G. Quo vadis EPR? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:36-41. [PMID: 31345773 DOI: 10.1016/j.jmr.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Complexity of paramagnetic catalysts and materials increases, and the same applies to systems targeted by integrative structural biology. Hence, EPR spectroscopists must find ways to enhance information content of their data. I argue that a third major wave of method development in EPR spectroscopy, which is triggered by recent advances in digital electronics and computing, can achieve this. Transfer of NMR methods to EPR will go on, but part of the new EPR methodology will depend on completely new concepts.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zurich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Ye M, Thompson NB, Brown AC, Suess DLM. A Synthetic Model of Enzymatic [Fe 4S 4]-Alkyl Intermediates. J Am Chem Soc 2019; 141:13330-13335. [PMID: 31373801 PMCID: PMC6748666 DOI: 10.1021/jacs.9b06975] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Although
alkyl complexes of [Fe4S4] clusters
have been invoked as intermediates in a number of enzymatic reactions,
obtaining a detailed understanding of their reactivity patterns and
electronic structures has been difficult owing to their transient
nature. To address this challenge, we herein report the synthesis
and characterization of a 3:1 site-differentiated [Fe4S4]2+–alkyl cluster. Whereas [Fe4S4]2+ clusters typically exhibit pairwise delocalized
electronic structures in which each Fe has a formal valence of 2.5+,
Mössbauer spectroscopic and computational studies suggest that
the highly electron-releasing alkyl group partially localizes the
charge distribution within the cubane, an effect that has not been
previously observed in tetrahedrally coordinated [Fe4S4] clusters.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Niklas B Thompson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Alexandra C Brown
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel L M Suess
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Ekanger LA, Oyala PH, Moradian A, Sweredoski MJ, Barton JK. Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [Fe 4S 4] Cluster Nitrosylation. J Am Chem Soc 2018; 140:11800-11810. [PMID: 30145881 DOI: 10.1021/jacs.8b07362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we characterize the [Fe4S4] cluster nitrosylation of a DNA repair enzyme, endonuclease III (EndoIII), using DNA-modified gold electrochemistry and protein film voltammetry, electrophoretic mobility shift assays, mass spectrometry of whole and trypsin-digested protein, and a variety of spectroscopies. Exposure of EndoIII to nitric oxide under anaerobic conditions transforms the [Fe4S4] cluster into a dinitrosyl iron complex, [(Cys)2Fe(NO)2]-, and Roussin's red ester, [(μ-Cys)2Fe2(NO)4], in a 1:1 ratio with an average retention of 3.05 ± 0.01 Fe per nitrosylated cluster. The formation of the dinitrosyl iron complex is consistent with previous reports, but the Roussin's red ester is an unreported product of EndoIII nitrosylation. Hyperfine sublevel correlation (HYSCORE) pulse EPR spectroscopy detects two distinct classes of NO with 14N hyperfine couplings consistent with the dinitrosyl iron complex and reduced Roussin's red ester. Whole-protein mass spectrometry of EndoIII nitrosylated with 14NO and 15NO support the assignment of a protein-bound [(μ-Cys)2Fe2(NO)4] Roussin's red ester. The [Fe4S4]2+/3+ redox couple of DNA-bound EndoIII is observable using DNA-modified gold electrochemistry, but nitrosylated EndoIII does not display observable redox activity using DNA electrochemistry on gold despite having a similar DNA-binding affinity as the native protein. However, direct electrochemistry of protein films on graphite reveals the reduction potential of native and nitrosylated EndoIII to be 127 ± 6 and -674 ± 8 mV vs NHE, respectively, corresponding to a shift of approximately -800 mV with cluster nitrosylation. Collectively, these data demonstrate that DNA-bound redox activity, and by extension DNA-mediated charge transport, is modulated by [Fe4S4] cluster nitrosylation.
Collapse
|
18
|
Byer A, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB. Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis. J Am Chem Soc 2018; 140:8634-8638. [PMID: 29954180 PMCID: PMC6053644 DOI: 10.1021/jacs.8b04061] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes comprise a vast superfamily catalyzing diverse reactions essential to all life through homolytic SAM cleavage to liberate the highly reactive 5'-deoxyadenosyl radical (5'-dAdo·). Our recent observation of a catalytically competent organometallic intermediate Ω that forms during reaction of the radical SAM (RS) enzyme pyruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an intermediate under a variety of mixing order conditions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double resonance spectroscopy establish that Ω involves an Fe-C5' bond between 5'-dAdo· and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (coenzyme B12) cofactor used to initiate radical reactions via a 5'-dAdo· intermediate. Liberation of a reactive 5'-dAdo· intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However, coenzyme B12 is involved in enzymes catalyzing only a small number (∼12) of distinct reactions, whereas the RS superfamily has more than 100 000 distinct sequences and over 80 reaction types characterized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.
Collapse
Affiliation(s)
- Amanda
S. Byer
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Hao Yang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Elizabeth C. McDaniel
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Venkatesan Kathiresan
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stella Impano
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Adrien Pagnier
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Hope Watts
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Carly Denler
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Anna L. Vagstad
- Institute
of Microbiology, Eidgenössische Technische
Hochschule Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Jörn Piel
- Institute
of Microbiology, Eidgenössische Technische
Hochschule Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Kaitlin S. Duschene
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Thomas P. Shields
- Cassia,
LLC, 3030 Bunker Hill
Street, Ste. 214, San Diego, California 92109, United States
| | - Lincoln G. Scott
- Cassia,
LLC, 3030 Bunker Hill
Street, Ste. 214, San Diego, California 92109, United States
| | - Edward A. Lilla
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - William E. Broderick
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,
| | - Joan B. Broderick
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States,
| |
Collapse
|
19
|
Bottorf L, Sahu ID, McCarrick RM, Lorigan GA. Utilization of 13C-labeled amino acids to probe the α-helical local secondary structure of a membrane peptide using electron spin echo envelope modulation (ESEEM) spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1447-1451. [PMID: 29694834 PMCID: PMC5957090 DOI: 10.1016/j.bbamem.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 11/22/2022]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy in combination with site-directed spin labeling (SDSL) has been established as a valuable biophysical technique to provide site-specific local secondary structure of membrane proteins. This pulsed electron paramagnetic resonance (EPR) method can successfully distinguish between α-helices, β-sheets, and 310-helices by strategically using 2H-labeled amino acids and SDSL. In this study, we have explored the use of 13C-labeled residues as the NMR active nuclei for this approach for the first time. 13C-labeled d5-valine (Val) or 13C-labeled d6-leucine (Leu) were substituted at a specific Val or Leu residue (i), and a nitroxide spin label was positioned 2 or 3 residues away (denoted i-2 and i-3) on the acetylcholine receptor M2δ (AChR M2δ) in a lipid bilayer. The 13C ESEEM peaks in the FT frequency domain data were observed for the i-3 samples, and no 13C peaks were observed in the i-2 samples. The resulting spectra were indicative of the α-helical local secondary structure of AChR M2δ in bicelles. This study provides more versatility and alternative options when using this ESEEM approach to study the more challenging recombinant membrane protein secondary structures.
Collapse
Affiliation(s)
- Lauren Bottorf
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
20
|
Dong M, Kathiresan V, Fenwick MK, Torelli AT, Zhang Y, Caranto JD, Dzikovski B, Sharma A, Lancaster KM, Freed JH, Ealick SE, Hoffman BM, Lin H. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. Science 2018; 359:1247-1250. [PMID: 29590073 DOI: 10.1126/science.aao6595] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Diphthamide biosynthesis involves a carbon-carbon bond-forming reaction catalyzed by a radical S-adenosylmethionine (SAM) enzyme that cleaves a carbon-sulfur (C-S) bond in SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. Using rapid freezing, we have captured an organometallic intermediate with an iron-carbon (Fe-C) bond between ACP and the enzyme's [4Fe-4S] cluster. In the presence of the substrate protein, elongation factor 2, this intermediate converts to an organic radical, formed by addition of the ACP radical to a histidine side chain. Crystal structures of archaeal diphthamide biosynthetic radical SAM enzymes reveal that the carbon of the SAM C-S bond being cleaved is positioned near the unique cluster Fe, able to react with the cluster. Our results explain how selective C-S bond cleavage is achieved in this radical SAM enzyme.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew T Torelli
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan D Caranto
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Guidelines for Determining the Structures of Radical SAM Enzyme-Catalyzed Modifications in the Biosynthesis of RiPP Natural Products. Methods Enzymol 2018; 606:439-460. [DOI: 10.1016/bs.mie.2018.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Ollagnier de Choudens S, Barras F. Genetic, Biochemical, and Biophysical Methods for Studying FeS Proteins and Their Assembly. Methods Enzymol 2017; 595:1-32. [PMID: 28882198 DOI: 10.1016/bs.mie.2017.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FeS clusters containing proteins are structurally and functionally diverse and present in most organisms. Our understanding of FeS cluster production and insertion into polypeptides has benefited from collaborative efforts between in vitro and in vivo studies. The former allows a detailed description of FeS-containing protein and a deep understanding of the molecular mechanisms catalyzing FeS cluster assembly. The second allows to include metabolic and environmental constraints within the analysis of FeS homeostasis. The interplay and the cross talk between the two approaches have been a key strategy to reach a multileveled integrated understanding of FeS cluster homeostasis. In this chapter, we describe the genetic and biochemical/biophysical strategies that were used in the field of FeS cluster biogenesis, with the aim of providing the reader with a critical view of both approaches. In addition to the description of classic tricks and a series of recommendations, we will also discuss models as well as spectroscopic techniques useful to characterize FeS clusters such as UV-visible, Mössbauer, electronic paramagnetic resonance, resonance Raman, circular dichroism, and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Sandrine Ollagnier de Choudens
- Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, BioCat, Grenoble, France; CNRS, Laboratoire de Chimie et Biologie des Métaux, BioCat, UMR, Grenoble, France; CEA-Grenoble, DRF/BIG/CBM, Grenoble, France.
| | - Frédéric Barras
- Laboratoire Chimie Bactérienne, Université Aix-Marseille, CNRS, Marseille, France.
| |
Collapse
|
23
|
Rogawski R, McDermott AE. New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR. Arch Biochem Biophys 2017; 628:102-113. [PMID: 28623034 PMCID: PMC5815514 DOI: 10.1016/j.abb.2017.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Magic angle spinning solid state NMR studies of biological macromolecules [1-3] have enabled exciting studies of membrane proteins [4,5], amyloid fibrils [6], viruses, and large macromolecular assemblies [7]. Dynamic nuclear polarization (DNP) provides a means to enhance detection sensitivity for NMR, particularly for solid state NMR, with many recent biological applications and considerable contemporary efforts towards elaboration and optimization of the DNP experiment. This review explores precedents and innovations in biological DNP experiments, especially highlighting novel chemical biology approaches to introduce the radicals that serve as a source of polarization in DNP experiments.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Chemistry, Columbia University, NY, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, NY, NY 10027, United States.
| |
Collapse
|
24
|
Horitani M, Grubel K, McWilliams SF, Stubbert BD, Mercado BQ, Yu Y, Gurubasavaraj PM, Lees NS, Holland PL, Hoffman BM. ENDOR characterization of an iron-alkene complex provides insight into a corresponding organometallic intermediate of nitrogenase. Chem Sci 2017; 8:5941-5948. [PMID: 28989623 PMCID: PMC5620524 DOI: 10.1039/c7sc01602f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/17/2017] [Indexed: 12/16/2022] Open
Abstract
Comparison of an iron(I)–alkene complex to a nitrogenase intermediate using ENDOR reveals details of the binding geometry.
A bio-organometallic intermediate, denoted PA, was previously trapped during the reduction of propargyl alcohol to allyl alcohol (AA) by nitrogenase, and a similar one was trapped during acetylene reduction, representing foundational examples of alkene binding to a metal center in biology. ENDOR spectroscopy led to the conclusion that these intermediates have η2 binding of the alkene, with the hydrogens on the terminal carbon structurally/magnetically equivalent and related by local mirror symmetry. However, our understanding of both the PA intermediate, and of the dependability of the ENDOR analysis on which this understanding was based, was constrained by the absence of reference iron–alkene complexes for EPR/ENDOR comparison. Here, we report an ENDOR study of the crystallographically characterized biomimetic iron(i) complex 1, which exhibits η2 coordination of styrene, thus connecting hyperfine and structural parameters of an Fe-bound alkene fragment for the first time. A tilt of the alkene plane of 1 from normal to the crystallographic Fe–C2–C1 plane causes substantial differences in the dipolar couplings of the two terminal vinylic protons. Comparison of the hyperfine couplings of 1 and PA confirms the proposed symmetry of PA, and that the η2 interaction forms a scalene Fe–C–C triangle, rather than an isosceles triangle. This spectroscopic study of a structurally characterized complex thus shows the exceptional sensitivity of ENDOR spectroscopy to structural details, while enhancing our understanding of the geometry of a key nitrogenase adduct.
Collapse
Affiliation(s)
- Masaki Horitani
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , USA . .,Department of Applied Biochemistry and Food Science , Saga University , Saga , 840-8502 , Japan
| | - Katarzyna Grubel
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA .
| | - Sean F McWilliams
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA .
| | - Bryan D Stubbert
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA .
| | - Ying Yu
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | | | - Nicholas S Lees
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , USA .
| | - Patrick L Holland
- Department of Chemistry , Yale University , New Haven , CT 06520 , USA .
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , USA .
| |
Collapse
|
25
|
Bucinsky L, Breza M, Lee WT, Hickey AK, Dickie DA, Nieto I, DeGayner JA, Harris TD, Meyer K, Krzystek J, Ozarowski A, Nehrkorn J, Schnegg A, Holldack K, Herber RH, Telser J, Smith JM. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorg Chem 2017; 56:4752-4769. [PMID: 28379707 DOI: 10.1021/acs.inorgchem.7b00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-oxidation-state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin-state preferences of threefold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(ImR)3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(ImR)3}Fe(NR')]+, R = Mes, R' = 1-adamantyl (3), tBu (4), were investigated by electronic absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMENAr)FeN]+ (TIMENAr = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), were investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (for 3 and 4) and frequency-domain Fourier-transform (FD-FT) terahertz electron paramagnetic resonance (for 3), which reveal their zero-field splitting parameters. Experimentally correlated theoretical studies comprising ligand-field theory and quantum chemical theory, the latter including both density functional theory and ab initio methods, reveal the key role played by the Fe 3dz2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin-state preference of the complex. The ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wei-Tsung Lee
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, The University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Ismael Nieto
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Jordan A DeGayner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - T David Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg , Egerlandstraße 1, D-91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Joscha Nehrkorn
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | - Rolfe H Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| |
Collapse
|
26
|
Horitani M, Shisler K, Broderick WE, Hutcheson RU, Duschene KS, Marts AR, Hoffman BM, Broderick JB. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond. Science 2016; 352:822-5. [PMID: 27174986 DOI: 10.1126/science.aaf5327] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/02/2022]
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes.
Collapse
Affiliation(s)
- Masaki Horitani
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Krista Shisler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Rachel U Hutcheson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Kaitlin S Duschene
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Amy R Marts
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
27
|
Rizzato R, Bennati M. Cross-Polarization Electron-Nuclear Double Resonance Spectroscopy. Chemphyschem 2015; 16:3769-73. [DOI: 10.1002/cphc.201500938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Roberto Rizzato
- Research Group EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; 37077 Göttingen Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11; 37077 Göttingen Germany
- Department of Chemistry; University of Göttingen; 37077 Göttingen Germany
| |
Collapse
|
28
|
Hales BJ. Ethylene Glycol Quenching of Nitrogenase Catalysis: An Electron Paramagnetic Resonance Spectroscopic Study of Nitrogenase Turnover States and CO Bonding. Biochemistry 2015; 54:4208-15. [PMID: 26090555 DOI: 10.1021/acs.biochem.5b00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most hydrophilic organic solvents inhibit enzymatic activity. Nitrogenase is shown to be approximately 3 times more sensitive to organic inhibition than most other soluble enzymes. Ethylene glycol (EG) is demonstrated to rapidly inhibit nitrogenase activity without uncoupling ATP hydrolysis. Our data suggest the mechanism of inhibition is EG's blocking of binding of MgATP to the nitrogenase Fe protein. EG quenching allows, for the first time, the observation of the relaxation of the intermediate reaction states at room temperature. Electron paramagnetic resonance (EPR) spectroscopy is used to monitor the room-temperature decay of the nitrogenase turnover states following EG quenching of catalytic activity. The return of the intermediate states to the resting state occurs in multiple phases over 2 h. During the initial stage, nitrogenase still possesses the ability to generate CO-induced EPR signals even though catalytic activity has ceased. During the last phase of relaxation, the one-electron reduced state of the MoFe protein (E1) relaxes to the resting state (E0) in a slow first-order reaction.
Collapse
Affiliation(s)
- Brian J Hales
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|