1
|
Tiffner A, Hopl V, Schober R, Sallinger M, Grabmayr H, Höglinger C, Fahrner M, Lunz V, Maltan L, Frischauf I, Krivic D, Bhardwaj R, Schindl R, Hediger MA, Derler I. Orai1 Boosts SK3 Channel Activation. Cancers (Basel) 2021; 13:6357. [PMID: 34944977 PMCID: PMC8699475 DOI: 10.3390/cancers13246357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.
Collapse
Affiliation(s)
- Adéla Tiffner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Valentina Hopl
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Romana Schober
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias Sallinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Herwig Grabmayr
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Carmen Höglinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Marc Fahrner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Victoria Lunz
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Lena Maltan
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Irene Frischauf
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Denis Krivic
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| |
Collapse
|
2
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
3
|
Wang J, Tang Z, Zhang Y, Qiu C, Zhu L, Zhao N, Liu Z. Matrine alleviates AGEs- induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity. Eur J Pharmacol 2019; 842:118-124. [DOI: 10.1016/j.ejphar.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
|