1
|
Xia H, Xia X, Guo M, Liu W, Tang G. The MAP kinase FvHog1 regulates FB1 synthesis and Ca 2+ homeostasis in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134682. [PMID: 38795487 DOI: 10.1016/j.jhazmat.2024.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The high osmolarity glycerol 1 mitogen-activated protein kinase (Hog1-MAPK) cascade genes are important for diverse biological processes. The activated Hog1 upon multiple environmental stress stimuli enters into the nucleus where it directly phosphorylates transcription factors to regulate various physiological processes in phytopathogenic fungi. However, their roles have not been well-characterized in Fusarium verticillioides. In this study, FvHog1 is identified and functionally analyzed. The findings reveal that the phosphorylation level and nuclear localization of FvHog1 are increased in Fumonisin B1 (FB1)-inducing condition to regulate the expression of FB1 biosynthesis FUM genes. More importantly, the deletion mutants of Hog1-MAPK pathway show increased sensitivity to Ca2+ stress and elevated intracellular Ca2+ content. The phosphorylation level and nuclear localization of FvHog1 are increased with Ca2+ treatment. Furthermore, our results show that FvHog1 can directly phosphorylate Ca2+-responsive zinc finger transcription factor 1 (FvCrz1) to regulate Ca2+ homeostasis. In conclusion, our findings indicate that FvHog1 is required for FB1 biosynthesis, pathogenicity and Ca2+ homeostasis in F. verticillioides. It provides a theoretical basis for effective prevention and control maize ear and stalk rot disease.
Collapse
Affiliation(s)
- Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang L, Li Y, Dong L, Sun K, Liu H, Ma Z, Yan L, Yin Y. MAP Kinase FgHog1 and Importin β FgNmd5 Regulate Calcium Homeostasis in Fusarium graminearum. J Fungi (Basel) 2023; 9:707. [PMID: 37504696 PMCID: PMC10381525 DOI: 10.3390/jof9070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Maintaining cellular calcium (Ca2+) homeostasis is essential for many aspects of cellular life. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway responsible for signal integration and transduction plays crucial roles in environmental adaptation, especially in the response to osmotic stress. Hog1 is activated by transient Ca2+ increase in yeast, but the functions of the HOG pathway in Ca2+ homeostasis are largely unknown. We found that the HOG pathway was involved in the regulation of Ca2+ homeostasis in Fusarium graminearum, a devastating fungal pathogen of cereal crops. The deletion mutants of HOG pathway displayed increased sensitivity to Ca2+ and FK506, and elevated intracellular Ca2+ content. Ca2+ treatment induced the phosphorylation of FgHog1, and the phosphorylated FgHog1 was transported into the nucleus by importin β FgNmd5. Moreover, the increased phosphorylation and nuclear accumulation of FgHog1 upon Ca2+ treatment is independent of the calcineurin pathway that is conserved and downstream of the Ca2+ signal. Taken together, this study reported the novel function of FgHog1 in the regulation of Ca2+ homeostasis in F. graminearum, which advance the understanding of the HOG pathway and the association between the HOG and calcineurin pathways in fungi.
Collapse
Affiliation(s)
- Lixin Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yiqing Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lanlan Dong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kewei Sun
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hao Liu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhonghua Ma
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Yanni Yin
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
3
|
Liu X, Moshiri H, He Q, Sahoo A, Walker SE. Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Front Mol Biosci 2022; 8:787781. [PMID: 35047555 PMCID: PMC8762332 DOI: 10.3389/fmolb.2021.787781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Houtan Moshiri
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Qian He
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Ansuman Sahoo
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Sarah E Walker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Usman HM, Tan Q, Fan F, Karim MM, Yin WX, Zhu FX, Luo CX. Sensitivity of Colletotrichum nymphaeae to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China. PLANT DISEASE 2022; 106:165-173. [PMID: 34406787 DOI: 10.1094/pdis-05-21-0993-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colletotrichum nymphaeae is the dominant species causing anthracnose disease of peach in China. In this study, 140 isolates of C. nymphaeae were assessed for their sensitivity to six fungicides. It was found that C. nymphaeae was highly resistant to carbendazim, procymidone, and boscalid but sensitive to pyraclostrobin and prochloraz. For fludioxonil, the fungus exhibited differential sensitivities (i.e., approximately 14% of isolates were resistant to fludioxonil and the resistance was stable). Fludioxonil-resistant isolates had a mean EC50 value of 2.2380 µg/ml, whereas the mean EC50 value was 0.0194 µg/ml in fludioxonil-sensitive isolates. The mean EC50 values of C. nymphaeae for pyraclostrobin and prochloraz were 0.0083 µg/ml and 0.002 µg/ml, respectively. No cross-resistance was observed between fungicides from different groups. Mycelial growth rate, control efficacy, and osmotic stress responses were significantly different (P < 0.05) between fludioxonil-sensitive (FluS) and -resistant (FluR) isolates, but no significant difference was observed (P > 0.05) in virulence and sporulation between FluS and FluR isolates. No mutation was detected in coding regions of the CnOs-1, Cal, Hk1, Hog1, TPI, and Mrr1 genes. Interestingly, with fludioxonil treatment, the expression of ABC transporter gene atrB was significantly overexpressed in some resistant isolates. However, overexpression of the atrB gene was not detected in one moderately and one highly resistant isolate, indicating that other unknown mechanisms may be involved. Current findings uncovered several effective chemicals and provided the foundation for designing management strategies to practically control peach anthracnose with the most effective demethylation inhibitor fungicides and quinone outside inhibitor fungicides.
Collapse
Affiliation(s)
- Hafiz Muhammad Usman
- Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Tan
- Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Fan
- Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohammad Mazharul Karim
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fu-Xing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Lab of Plant Pathology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Genome-wide toxicogenomic study of the lanthanides sheds light on the selective toxicity mechanisms associated with critical materials. Proc Natl Acad Sci U S A 2021; 118:2025952118. [PMID: 33903247 DOI: 10.1073/pnas.2025952118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lanthanides are a series of critical elements widely used in multiple industries, such as optoelectronics and healthcare. Although initially considered to be of low toxicity, concerns have emerged during the last few decades over their impact on human health. The toxicological profile of these metals, however, has been incompletely characterized, with most studies to date solely focusing on one or two elements within the group. In the current study, we assessed potential toxicity mechanisms in the lanthanide series using a functional toxicogenomics approach in baker's yeast, which shares many cellular pathways and functions with humans. We screened the homozygous deletion pool of 4,291 Saccharomyces cerevisiae strains with the lanthanides and identified both common and unique functional effects of these metals. Three very different trends were observed within the lanthanide series, where deletions of certain proteins on membranes and organelles had no effect on the cellular response to early lanthanides while inducing yeast sensitivity and resistance to middle and late lanthanides, respectively. Vesicle-mediated transport (primarily endocytosis) was highlighted by both gene ontology and pathway enrichment analyses as one of the main functions disturbed by the majority of the metals. Protein-protein network analysis indicated that yeast response to lanthanides relied on proteins that participate in regulatory paths used for calcium (and other biologically relevant cations), and lanthanide toxicity included disruption of biosynthetic pathways by enzyme inhibition. Last, multiple genes and proteins identified in the network analysis have human orthologs, suggesting that those may also be targeted by lanthanides in humans.
Collapse
|
6
|
Integrated transcriptomic and proteomic analysis of the ethanol stress response in Saccharomyces cerevisiae Sc131. J Proteomics 2019; 203:103377. [DOI: 10.1016/j.jprot.2019.103377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/12/2019] [Accepted: 05/12/2019] [Indexed: 12/29/2022]
|
7
|
Esfandyarpour R, Kashi A, Nemat-Gorgani M, Wilhelmy J, Davis RW. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc Natl Acad Sci U S A 2019; 116:10250-10257. [PMID: 31036648 PMCID: PMC6535016 DOI: 10.1073/pnas.1901274116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples' response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.
Collapse
Affiliation(s)
- R Esfandyarpour
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697;
| | - A Kashi
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304
| | - M Nemat-Gorgani
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| | - J Wilhelmy
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| | - R W Davis
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304;
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| |
Collapse
|
8
|
Kim J, Sung GH. Beauvericin synthetase contains a calmodulin binding motif in the entomopathogenic fungus Beauveria bassiana. J GEN APPL MICROBIOL 2018; 64:145-147. [PMID: 29553056 DOI: 10.2323/jgam.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca2+ signals are partially decoded by Ca2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca2+-dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca2+. In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca2+-dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.
Collapse
Affiliation(s)
| | - Gi-Ho Sung
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University.,Department of Microbiology, College of Medicine, Catholic Kwandong University.,Institute for Translational and Clinical Research, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University
| |
Collapse
|
9
|
Kim J, Oh J, Yoon DH, Sung GH. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:612-617. [PMID: 28556625 DOI: 10.1111/1758-2229.12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H2 O2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Junsang Oh
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Deok-Hyo Yoon
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Gi-Ho Sung
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601, Korea
- Institute for Translational and Clinical Research, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| |
Collapse
|
10
|
Kim J, Oh J, Yoon DH, Sung GH. Identification of calmodulin binding proteins in the entomopathogenic fungus Beauveria bassiana. Folia Microbiol (Praha) 2017; 63:13-16. [PMID: 28497337 DOI: 10.1007/s12223-017-0529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/05/2017] [Indexed: 01/24/2023]
Abstract
Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Deok-Hyo Yoon
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| |
Collapse
|