1
|
Félix-Pérez T, Mora-García M, Rebolloso-Gómez Y, DelaGarza-Varela A, Castro-Velázquez G, Peña-Gómez SG, Riego-Ruiz L, Sánchez-Olea R, Calera MR. Translation initiation factor eIF1A rescues hygromycin B sensitivity caused by deleting the carboxy-terminal tail in the GPN-loop GTPase Npa3. FEBS J 2024; 291:2191-2208. [PMID: 38431777 DOI: 10.1111/febs.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.
Collapse
Affiliation(s)
- Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | | | | | | | | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
2
|
Peña-Gómez SG, Cristóbal-Mondragón GR, Vega-Palomo CR, Mora-García M, Félix-Pérez T, Rebolloso-Gómez Y, Calera MR, Sánchez-Olea R. Nucleocytoplasmic shuttling of the GPN-loop GTPase Gpn3 is regulated by serum and cell density in MCF-12A mammary cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119685. [PMID: 38342311 DOI: 10.1016/j.bbamcr.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
The best-known function of the essential GPN-loop GTPase Gpn3 is to contribute to RNA polymerase II assembly, a prerequisite for its nuclear targeting. Although this process occurs in the cytoplasm, we have previously shown that Gpn3 enters the cell nucleus before being polyubiquitinated. Here, we show that inhibiting Crm1-mediated nuclear export with leptomycin B, or the proteasome with MG132, caused the nuclear accumulation of recombinant and endogenous Gpn3 in MCF-12A cells. When added simultaneously, leptomycin B and MG132 had an additive effect. Analysis of Gpn3 primary sequence revealed the presence of at least five nuclear export sequence (NES) motifs, with some having a higher exposure to the solvent in the GTP-bound than GDP-bound state in a Gpn3 structural model. Inactivation of any of these NESes led to some degree of Gpn3 nuclear accumulation, although mutating NES1 or NES3 had the more robust effect. MCF-12A cells expressing exclusively a NES-deficient version of Gpn3R-Flag proliferated slower than cells expressing Gpn3R-Flag wt, indicating that nuclear export is important for Gpn3 function. Next, we searched for physiological conditions regulating Gpn3 nucleocytoplasmic shuttling. Interestingly, whereas Gpn3R-Flag was both nuclear and cytoplasmic in low-density growing MCF-12A cells, it was exclusively cytoplasmic in high-density areas. Furthermore, Gpn3R-Flag was cytoplasmic, mostly perinuclear, in sparse but starved MCF-12A cells, and serum-stimulation caused a rapid, although transient, Gpn3R-Flag nuclear accumulation. We conclude that Gpn3 nucleocytoplasmic shuttling is regulated by cell density and growth factors, and propose that Gpn3 has an unknown nuclear function positively linked to cell growth and/or proliferation.
Collapse
Affiliation(s)
- Sonia G Peña-Gómez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | | | | | - Martín Mora-García
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México.
| | | |
Collapse
|
3
|
Korf L, Ye X, Vogt MS, Steinchen W, Watad M, van der Does C, Tourte M, Sivabalasarma S, Albers SV, Essen LO. Archaeal GPN-loop GTPases involve a lock-switch-rock mechanism for GTP hydrolysis. mBio 2023; 14:e0085923. [PMID: 37962382 PMCID: PMC10746158 DOI: 10.1128/mbio.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE GPN-loop GTPases have been found to be crucial for eukaryotic RNA polymerase II assembly and nuclear trafficking. Despite their ubiquitous occurrence in eukaryotes and archaea, the mechanism by which these GTPases mediate their function is unknown. Our study on an archaeal representative from Sulfolobus acidocaldarius showed that these dimeric GTPases undergo large-scale conformational changes upon GTP hydrolysis, which can be summarized as a lock-switch-rock mechanism. The observed requirement of SaGPN for motility appears to be due to its large footprint on the archaeal proteome.
Collapse
Affiliation(s)
- Lukas Korf
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Xing Ye
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Marian S. Vogt
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse, Marburg, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Chris van der Does
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Maxime Tourte
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | | |
Collapse
|
4
|
Ma L, Wang L, Gao M, Zhang X, Zhao X, Xie D, Zhang J, Wang Z, Hou L, Zeng F. Rtr1 is required for Rpb1-Rpb2 assembly of RNAPII and prevents their cytoplasmic clump formation. FASEB J 2022; 36:e22585. [PMID: 36190433 DOI: 10.1096/fj.202200698rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
RNA polymerase II (RNAPII) is an essential machinery for catalyzing mRNA synthesis and controlling cell fate in eukaryotes. Although the structure and function of RNAPII have been relatively defined, the molecular mechanism of its assembly process is not clear. The identification and functional analysis of assembly factors will provide new understanding to transcription regulation. In this study, we identify that RTR1, a known transcription regulator, is a new multicopy genetic suppressor of mutants of assembly factors Gpn3, Gpn2, and Rba50. We demonstrate that Rtr1 is directly required to assemble the two largest subunits of RNAPII by coordinating with Gpn3 and Npa3. Deletion of RTR1 leads to cytoplasmic clumping of RNAPII subunit and multiple copies of RTR1 can inhibit the formation of cytoplasmic clump of RNAPII subunit in gpn3-9 mutant, indicating a new layer function of Rtr1 in checking proper assembly of RNAPII. In addition, we find that disrupted activity of Rtr1 phosphatase does not trigger the formation of cytoplasmic clump of RNAPII subunit in a catalytically inactive mutant of RTR1. Based on these results, we conclude that Rtr1 cooperates with Gpn3 and Npa3 to assemble RNAPII core.
Collapse
Affiliation(s)
- Lujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinjie Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiangdong Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jing Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Science & Technology, Hebei Agricultural University, Cangzhou, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae. Curr Genet 2022; 68:343-360. [PMID: 35660944 DOI: 10.1007/s00294-022-01243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (npa3∆C) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3∆C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.
Collapse
|
6
|
Garrido-Godino AI, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Mota-Trujillo MDC, Navarro F. The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:2002. [PMID: 35216121 PMCID: PMC8875030 DOI: 10.3390/ijms23042002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Rtr1 is an RNA polymerase II (RNA pol II) CTD-phosphatase that influences gene expression during the transition from transcription initiation to elongation and during transcription termination. Rtr1 interacts with the RNA pol II and this interaction depends on the phosphorylation state of the CTD of Rpb1, which may influence dissociation of the heterodimer Rpb4/7 during transcription. In addition, Rtr1 was proposed as an RNA pol II import factor in RNA pol II biogenesis and participates in mRNA decay by autoregulating the turnover of its own mRNA. Our work shows that Rtr1 acts in RNA pol II assembly by mediating the Rpb4/7 association with the rest of the enzyme. RTR1 deletion alters RNA pol II assembly and increases the amount of RNA pol II associated with the chromatin that lacks Rpb4, decreasing Rpb4-mRNA imprinting and, consequently, increasing mRNA stability. Thus, Rtr1 interplays RNA pol II biogenesis and mRNA decay regulation. Our data also indicate that Rtr1 mediates mRNA decay regulation more broadly than previously proposed by cooperating with Rpb4. Interestingly, our data include new layers in the mechanisms of gene regulation and in the crosstalk between mRNA synthesis and decay by demonstrating how the association of Rpb4/7 to the RNA pol II influences mRNA decay.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
7
|
Fianu I, Dienemann C, Aibara S, Schilbach S, Cramer P. Cryo-EM structure of mammalian RNA polymerase II in complex with human RPAP2. Commun Biol 2021; 4:606. [PMID: 34021257 PMCID: PMC8140126 DOI: 10.1038/s42003-021-02088-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Nuclear import of RNA polymerase II (Pol II) involves the conserved factor RPAP2. Here we report the cryo-electron microscopy (cryo-EM) structure of mammalian Pol II in complex with human RPAP2 at 2.8 Å resolution. The structure shows that RPAP2 binds between the jaw domains of the polymerase subunits RPB1 and RPB5. RPAP2 is incompatible with binding of downstream DNA during transcription and is displaced upon formation of a transcription pre-initiation complex.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shintaro Aibara
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
8
|
Garrido-Godino AI, Gutiérrez-Santiago F, Navarro F. Biogenesis of RNA Polymerases in Yeast. Front Mol Biosci 2021; 8:669300. [PMID: 34026841 PMCID: PMC8136413 DOI: 10.3389/fmolb.2021.669300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerases (RNA pols) transcriptional processes have been extensively investigated, and the structural analysis of eukaryotic RNA pols has been explored. However, the global assembly and biogenesis of these heteromultimeric complexes have been narrowly studied. Despite nuclear transcription being carried out by three RNA polymerases in eukaryotes (five in plants) with specificity in the synthesis of different RNA types, the biogenesis process has been proposed to be similar, at least for RNA pol II, to that of bacteria, which contains only one RNA pol. The formation of three different interacting subassembly complexes to conform the complete enzyme in the cytoplasm, prior to its nuclear import, has been assumed. In Saccharomyces cerevisiae, recent studies have examined in depth the biogenesis of RNA polymerases by characterizing some elements involved in the assembly of these multisubunit complexes, some of which are conserved in humans. This study reviews the latest studies governing the mechanisms and proteins described as being involved in the biogenesis of RNA polymerases in yeast.
Collapse
Affiliation(s)
- Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | | | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
9
|
Ye X, Vogt MS, van der Does C, Bildl W, Schulte U, Essen LO, Albers SV. The Phosphatase PP2A Interacts With ArnA and ArnB to Regulate the Oligomeric State and the Stability of the ArnA/B Complex. Front Microbiol 2020; 11:1849. [PMID: 32973695 PMCID: PMC7472852 DOI: 10.3389/fmicb.2020.01849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
In the crenarchaeon Sulfolobus acidocaldarius, the archaellum, a type-IV pilus like motility structure, is synthesized in response to nutrient starvation. Synthesis of components of the archaellum is controlled by the archaellum regulatory network (arn). Protein phosphorylation plays an important role in this regulatory network since the deletion of several genes encoding protein kinases and the phosphatase PP2A affected cell motility. Several proteins in the archaellum regulatory network can be phosphorylated, however, details of how phosphorylation levels of different components affect archaellum synthesis are still unknown. To identify proteins interacting with the S. acidocaldarius phosphatases PTP and PP2A, co-immunoprecipitation assays coupled to mass spectrometry analysis were performed. Thirty minutes after growth in nutrient starvation medium, especially a conserved putative ATP/GTP binding protein (Saci_1281), a universal stress protein (Saci_0887) and the archaellum regulators ArnA and ArnB were identified as highly abundant interaction proteins of PP2A. The interaction between ArnA, ArnB, and PP2A was further studied. Previous studies showed that the Forkhead-associated domain containing ArnA interacts with von Willebrand type A domain containing ArnB, and that both proteins could be phosphorylated by the kinase ArnC in vitro. The ArnA/B heterodimer was reconstituted from the purified proteins. In complex with ArnA, phosphorylation of ArnB by the ArnC kinase was strongly stimulated and resulted in formation of (ArnA/B)2 and higher oligomeric complexes, while association and dephosphorylation by PP2A resulted in dissociation of these ArnA/B complexes.
Collapse
Affiliation(s)
- Xing Ye
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | | | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies(BIOSS), Freiburg, Germany.,Center for Integrative Signaling Studies (CIBSS), Freiburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany.,Loewe Center for Synthetic Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies(BIOSS), Freiburg, Germany
| |
Collapse
|
10
|
Cristóbal-Mondragón GR, Lara-Chacón B, Santiago Á, De-la-Rosa V, González-González R, Muñiz-Luna JA, Ladrón-de-Guevara E, Romero-Romero S, Rangel-Yescas GE, Fernández Velasco DA, Islas LD, Pastor N, Sánchez-Olea R, Calera MR. FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex. FEBS J 2019; 286:4797-4818. [PMID: 31298811 DOI: 10.1111/febs.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
GPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells. Transiently expressed EYFP-Gpn1 and Gpn3-CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293-AD cells. Molecular modeling of the human Gpn1-Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α-helix 7, insertion 2, and the GPN-loop from each protein. In site-directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP-Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3-CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293-AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1-Gpn3 interaction is required to display the dominant-negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1-Gpn3 strong interaction is critical for their cellular function.
Collapse
Affiliation(s)
| | - Bárbara Lara-Chacón
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Víctor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | | | - Julio A Muñiz-Luna
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ernesto Ladrón-de-Guevara
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Daniel Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Roberto Sánchez-Olea
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|
11
|
Quantitative Image Restoration in Bright Field Optical Microscopy. Biophys J 2017; 113:1916-1919. [PMID: 28988026 DOI: 10.1016/j.bpj.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022] Open
Abstract
Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis.
Collapse
|
12
|
Human Gpn1 purified from bacteria binds guanine nucleotides and hydrolyzes GTP as a protein dimer stabilized by its C-terminal tail. Protein Expr Purif 2017; 132:85-96. [PMID: 28153773 DOI: 10.1016/j.pep.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/23/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
The essential GTPase Gpn1 mediates RNA polymerase II nuclear targeting and controls microtubule dynamics in yeast and human cells by molecular mechanisms still under investigation. Here, we purified human HisGpn1 expressed as a recombinant protein in bacteria E. coli BL-21 (DE3). Affinity purified HisGpn1 eluted from a size exclusion column as a protein dimer, a state conserved after removing the hexa-histidine tail and confirmed by separating HisGpn1 in native gels, and in dynamic light scattering experiments. Human HisGpn1 purity was higher than 95%, molecularly monodisperse and could be concentrated to more than 10 mg/mL without aggregating. Circular dichroism spectra showed that human HisGpn1 was properly folded and displayed a secondary structure rich in alpha helices. HisGpn1 effectively bound GDP and the non-hydrolyzable GTP analogue GMPPCP, and hydrolyzed GTP. We next tested the importance of the C-terminal tail, present in eukaryotic Gpn1 but not in the ancestral archaeal Gpn protein, on HisGpn1 dimer formation. C-terminal deleted human HisGpn1 (HisGpn1ΔC) was also purified as a protein dimer, indicating that the N-terminal GTPase domain contains the interaction surface needed for dimer formation. In contrast to HisGpn1, however, HisGpn1ΔC dimer spontaneously dissociated into monomers. In conclusion, we have developed a method to purify properly folded and functionally active human HisGpn1 from bacteria, and showed that the C-terminal tail, universally conserved in all eukaryotic Gpn1 orthologues, stabilizes the GTPase domain-mediated Gpn1 protein dimer. The availability of recombinant human Gpn1 will open new research avenues to unveil the molecular and pharmacological properties of this essential GTPase.
Collapse
|