1
|
Fonseca Teixeira A, Wu S, Luwor R, Zhu HJ. A New Era of Integration between Multiomics and Spatio-Temporal Analysis for the Translation of EMT towards Clinical Applications in Cancer. Cells 2023; 12:2740. [PMID: 38067168 PMCID: PMC10706093 DOI: 10.3390/cells12232740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Rodney Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| |
Collapse
|
2
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
3
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
4
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Zhan H, Sun X, Wang X, Gao Q, Yang M, Liu H, Zheng J, Gong X, Feng S, Chang X, Sun Y. LncRNA MEG3 Involved in NiO NPs-Induced Pulmonary Fibrosis via Regulating TGF-β1-Mediated PI3K/AKT Pathway. Toxicol Sci 2021; 182:120-131. [PMID: 33895847 DOI: 10.1093/toxsci/kfab047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Long noncoding RNA maternally expressed gene 3 (MEG3) involves in fibrotic diseases, but its role in nickel oxide nanoparticles (NiO NPs)-induced pulmonary fibrosis remains unclear. The present study aimed to explore the relationships among MEG3, transforming growth factor-β1 (TGF-β1) and phosphoinositide 3-kinase (PI3K)/AKT pathway in NiO NPs-induced pulmonary fibrosis. Wistar rats were intratracheally instilled with NiO NPs twice a week for 9 weeks, and human lung adenocarcinoma epithelial cells (A549 cells) were exposed to NiO NPs for 24 h. The pathological alterations and increased hydroxyproline indicated that NiO NPs caused pulmonary fibrosis in rats. The up-regulated type I collagen (Col-I) suggested that NiO NPs-induced collagen deposition in A549 cells. Meanwhile, NiO NPs could significantly down-regulate MEG3, up-regulate TGF-β1 and activate PI3K/AKT signaling pathway both in vivo and in vitro. However, we found that the PI3K/AKT pathway activated by NiO NPs could be suppressed by 10 μM TGF-β1 inhibitor (SB431542) in A549 cells. The protein markers (Col-I, Fibronectin, and alpha-smooth muscle actin) of collagen deposition up-regulated by NiO NPs were reduced by 10 μM PI3K inhibitor (LY294002). Furthermore, we further found that overexpressed MEG3 inhibited the expression of TGF-β1, resulting in the inactivation of PI3K/AKT pathway and the reduction of collagen formation. In summary, our results validated that MEG3 could arrest NiO NPs-induced pulmonary fibrosis via inhibiting TGF-β1-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou 730000, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
7
|
Li ZG, Xiang WC, Shui SF, Han XW, Guo D, Yan L. 11 Long noncoding RNA UCA1 functions as miR-135a sponge to promote the epithelial to mesenchymal transition in glioma. J Cell Biochem 2019; 121:2447-2457. [PMID: 31680311 DOI: 10.1002/jcb.29467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
The dysregulation of long noncoding (lncRNA) UCA1 may play an important role in tumor progression. However, the function in gliomas is unclear. Therefore, this experiment was designed to explore the pathogenesis of glioma based on lncRNA UCA1. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA UCA1, miR-135a, and HOXD9 in gliomas tissues. The effect of lncRNA UCA1 and miR-135a on tumor cell proliferation and migration invasiveness was examined by CCK-8 and transwell assays. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of lncRNA UCA1. Expression of E-cadherin, N-cadherin, vimentin, and HOXD9 was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. lncRNA UCA1 was highly expressed in glioma tissues and cell lines. lncRNA UCA1 expression was associated with significantly poor overall survival in gliomas. Moreover, lncRNA UCA1 significantly enhanced cell proliferation and migration, and promoted the occurrence of EMT. In addition, lncRNA UCA1 promoted the development of EMT by positively regulating HOXD9 expression as a miR-135a sponge. In vivo experiments indicated that UCA1 exerted its biological functions by modulating miR-135a and HOXD9. In conclusion, lncRNA UCA1 can induce the activation of HOXD9 by inhibiting the expression of miR-135a and promote the occurrence of EMT in glioma.
Collapse
Affiliation(s)
- Zhi-Guo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Chu Xiang
- Department of Neurosurgery, The General Hospital of Central Theater Command, PLA, China
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
The multiverse nature of epithelial to mesenchymal transition. Semin Cancer Biol 2019; 58:1-10. [DOI: 10.1016/j.semcancer.2018.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
|
9
|
Zheng G, Ma Y, Zou Y, Yin A, Li W, Dong D. HCMDB: the human cancer metastasis database. Nucleic Acids Res 2019; 46:D950-D955. [PMID: 29088455 PMCID: PMC5753185 DOI: 10.1093/nar/gkx1008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the main event leading to death in cancer patients. Over the past decade, high-throughput technologies have provided genome-wide view of transcriptomic changes associated with cancer metastases. Many microarray and RNA sequencing studies have addressed metastases-related expression patterns in various types of cancer, and the number of relevant works continues to increase rapidly. These works have characterized genes that orchestrate the metastatic phenotype of cancer cells. However, these expression data have been deposited in various repositories, and efficiently analyzing these data is still difficult because of the lack of an integrated data mining platform. To facilitate the in-depth analyses of transcriptome data on metastasis, it is quite important to make a comprehensive integration of these metastases-related expression data. Here, we presented a database, HCMDB (the human cancer metastasis database, http://hcmdb.i-sanger.com/index), which is freely accessible to the research community query cross-platform transcriptome data on metastases. HCMDB is developed and maintained as a useful resource for building the systems-biology understanding of metastasis.
Collapse
Affiliation(s)
- Guantao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.,Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Yijie Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Zou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - An Yin
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Wushuang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Rasmussen TP. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs. Semin Cancer Biol 2019; 57:36-44. [PMID: 30273656 DOI: 10.1016/j.semcancer.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cellular identity is established and maintained by the interplay of cell type-specific transcription factors and epigenetic regulation of the genome. During development in vivo and differentiation in vitro, transitions from one cell type to the next are triggered by cell signaling events culminating in modifications of chromatin that render genes accessible or inaccessible to the transcriptional apparatus. In recent years it has become apparent that cellular identity is plastic, and technological reprogramming methods such as somatic cell nuclear transfer and induced pluripotency can yield reprogrammed cells that have been restored to a state of developmental potency. Long noncoding RNAs (lncRNAs) are untranslated functional RNA molecules that are intimately involved in the regulation of the chromatin of protein-coding genes. In fact, recent evidence shows that there are more lncRNA species in the cell than mRNA species and that most protein-coding genes are likely to be under epigenetic regulation mediated by lncRNAs. This review examines lncRNA function in reprogrammed pluripotent cells and cancer stem cells. Because cancer stem cells arise from normal cells, their biogenesis can be viewed as a reprogramming process that occurs in vivo, and parallels between artificial reprogramming and cancer stem cell biogenesis are discussed.
Collapse
Affiliation(s)
- Theodore P Rasmussen
- University of Connecticut, Department of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Institute for Systems Genomics, 181 Auditorium Road, Storrs, CT 06269, USA; University of Connecticut, UConn Stem Cell Institute, 400 Farmington Avenue Farmington, CT 06033, USA.
| |
Collapse
|
11
|
Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease. Arterioscler Thromb Vasc Biol 2019; 38:1986-1996. [PMID: 30354260 DOI: 10.1161/atvbaha.118.311276] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose their properties and transform into fibroblast-like cells. This transition process contributes to cardiac fibrosis, a common feature of patients with chronic heart failure. To date, no specific therapies to halt or reverse cardiac fibrosis are available, so knowledge of the underlying mechanisms of cardiac fibrosis is urgently needed. In addition, EndMT contributes to other cardiovascular pathologies such as atherosclerosis and pulmonary hypertension, but also to cancer and organ fibrosis. Remarkably, the molecular mechanisms driving EndMT are largely unknown. Epigenetics play an important role in regulating gene transcription and translation and have been implicated in the EndMT process. Therefore, epigenetics might be the missing link in unraveling the underlying mechanisms of EndMT. Here, we review the involvement of epigenetic regulators during EndMT in the context of cardiac fibrosis. The role of DNA methylation, histone modifications (acetylation and methylation), and noncoding RNAs (microRNAs, long noncoding RNAs, and circular RNAs) in the facilitation and inhibition of EndMT are discussed, and potential therapeutic epigenetic targets will be highlighted.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.).,Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Xingbo Xu
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Elisabeth M Zeisberg
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| |
Collapse
|
12
|
Wan Y, Li M, Huang P. LINC01296 promotes proliferation, migration, and invasion of HCC cells by targeting miR-122-5P and modulating EMT activity. Onco Targets Ther 2019; 12:2193-2203. [PMID: 30988624 PMCID: PMC6441465 DOI: 10.2147/ott.s197338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Long noncoding RNAs (lncRNAs) play an important role in the origination and progression of hepatocellular carcinoma (HCC). However, the biological function of the long intergenic non-protein-coding RNA, LINC01296, in HCC remains unknown. Methods Here, we observed an increase in the expression levels of LINC01296 in HCC tissues and cell lines using reverse transcription quantitative PCR; these data were consistent with that obtained from The Cancer Genome Atlas database. Results A higher expression level was correlated with higher alpha fetoprotein levels, a larger tumor size, an advanced TNM stage, and a poorer overall survival rate. Upregulation of LINC01296 promoted the proliferation, migration, and invasion of HCC cells. Improvement of cell migration and invasion attributable to the overexpression of LINC01296 was related to an increase in epithelial–mesenchymal transition (EMT). Mechanistically, miR-122-5P can bind to LINC01296 and decrease its oncogenic effect. Conclusion Collectively, the results of this study revealed that LINC01296 is a tumor promoter that can promote the migration and invasion of HCC cells through EMT, while miR-122-5P is involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Yafeng Wan
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| | - Molin Li
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| |
Collapse
|
13
|
Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, Zhao W, Wang W, Li Z, Liu J. Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY) 2018; 10:3806-3820. [PMID: 30540564 PMCID: PMC6326687 DOI: 10.18632/aging.101674] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) responds for the majority of death of thyroid carcinoma and often causes chemotherapy resistance. We investigated the influence of circEIF6 (Hsa_circ_0060060) on the cisplatin-sensitivity in papillary thyroid carcinoma (PTC) and ATC cells, and explored its regulation to downstream molecules miR-144-3p and Transforming Growth Factor α (TGF-α). Differentially expressed circRNAs in PTC were analyzed using the GSE93522 data downloaded. Expressions of circEIF6, miR-144-3p, TGF-α, autophagy-related proteins and apoptosis-related proteins were determined using qRT-PCR or western blot. RNA pull-down assay and dual luciferase report assay were applied to reveal the target relationships. Autophagy marker LC3 and cell proliferation marker ki67 were evaluated by immunofluorescence and immunohistochemistry. Cell viability was evaluated with MTT assay and cell apoptosis was assessed by flow cytometric analysis. CircEIF6, could promote autophagy induced by cisplatin, thus inhibiting cell apoptosis and enhancing the resistance of PTC and ATC cells to cisplatin. Has-miR-144-3p was the target of circEIF6 and was regulated by circEIF6. Besides, circEIF6 promoted autophagy by regulating miR-144-3p/TGF-α axis, enhancing the cisplatin-resistance in PTC and ATC cells. CircEIF6 promoted tumor growth by regulating miR-144-3p/TGF-α and circEIF6 knock-down enhanced cisplatin sensitivity in vivo. CircEIF6 could provide a target for therapy of cisplatin-resistance in thyroid carcinoma.
Collapse
Affiliation(s)
- Feng Liu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China
- Equal contribution
| | - Jin Zhang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
- Equal contribution
| | - Long Qin
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ziyao Yang
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianxia Xiong
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanyan Zhang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ruihuan Li
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Shujing Li
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Huifang Wang
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bo Yu
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Wenjun Zhao
- Department of General Surgery, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Weiran Wang
- Department of General Surgery, Second Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhensu Li
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jing Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
14
|
Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest New Drugs 2018; 36:1116-1132. [DOI: 10.1007/s10637-018-0624-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
|
15
|
Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J, Gong Z. Circular RNAs: clinical relevance in cancer. Oncotarget 2017; 9:1444-1460. [PMID: 29416705 PMCID: PMC5787450 DOI: 10.18632/oncotarget.22846] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs, as recently discovered new endogenous non-coding RNAs, are important gene modulators with critical roles in tumor initiation and malignant progression. With the development of RNA sequencing and microarray technologies, numerous of functional circRNAs have been identified in cancerous tissues and cell lines. Mechanistically, circRNAs function as miRNA sponges, miRNA reservoirs or parental gene expression regulators. In this review, we discuss the properties and functions of circRNAs and their clinical implication as promising biomarkers for cancer research. Moreover, some emerging fields, such as exosome-loaded and immune response-associated circRNAs, are also discussed, suggesting novel insights into the carcinogenesis and therapy associated with these molecules.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| |
Collapse
|
16
|
Neumann DP, Goodall GJ, Gregory PA. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol 2017; 75:50-60. [PMID: 28789987 DOI: 10.1016/j.semcdb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.
Collapse
Affiliation(s)
- Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|