1
|
Ikeda Y, Miyazaki R, Tsukazaki T, Akiyama Y, Mori H. Translation arrest cancellation of VemP, a secretion monitor in Vibrio, is regulated by multiple cis and trans factors, including SecY. J Biol Chem 2024; 300:107735. [PMID: 39233231 PMCID: PMC11470409 DOI: 10.1016/j.jbc.2024.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
VemP is a secretory protein in the Vibrio species that monitors cellular protein-transport activity through its translation arrest, allowing expression of the downstream secD2-secF2 genes in the same operon, which encode components of the protein translocation machinery. When cellular protein-transport function is fully active, secD2/F2 expression remains repressed as VemP translation arrest is canceled immediately. The VemP arrest cancellation occurs on the SecY/E/G translocon in a late stage in the translocation process and requires both trans factors, SecD/F and PpiD/YfgM, and a cis element, Arg-85 in VemP; however, the detailed molecular mechanism remains elusive. This study aimed to elucidate how VemP passing through SecY specifically monitors SecD/F function. Genetic and biochemical studies showed that SecY is involved in the VemP arrest cancellation and that the arrested VemP is stably associated with a specific site in the protein-conducting pore of SecY. VemP-Bla reporter analyses revealed that a short hydrophobic segment adjacent to Arg-85 plays a critical role in the regulated arrest cancellation with its hydrophobicity correlating with the stability of the VemP arrest. We identified Gln-65 and Pro-67 in VemP as novel elements important for the regulation. We propose a model for the regulation of the VemP arrest cancellation by multiple cis elements and trans factors with different roles.
Collapse
Affiliation(s)
- Yuki Ikeda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
4
|
Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, Tsukazaki T, Akiyama Y, Mori H. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. J Biol Chem 2022; 298:102572. [PMID: 36209828 PMCID: PMC9643414 DOI: 10.1016/j.jbc.2022.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD–YfgM complex formation as well as the molecular mechanisms of PpiD–YfgM and PpiD/YfgM–Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD–YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mengting Ai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Natsuko Tanaka
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dhomae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Allen WJ, Corey RA, Watkins DW, Oliveira ASF, Hards K, Cook GM, Collinson I. Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. eLife 2022; 11:e77586. [PMID: 35486093 PMCID: PMC9110029 DOI: 10.7554/elife.77586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.
Collapse
Affiliation(s)
- William J Allen
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - A Sofia F Oliveira
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
- School of Chemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Kiel Hards
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| |
Collapse
|
6
|
Tsviklist V, Guest RL, Raivio TL. The Cpx Stress Response Regulates Turnover of Respiratory Chain Proteins at the Inner Membrane of Escherichia coli. Front Microbiol 2022; 12:732288. [PMID: 35154019 PMCID: PMC8831704 DOI: 10.3389/fmicb.2021.732288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
The Cpx envelope stress response is a major signaling pathway monitoring bacterial envelope integrity, activated both internally by excessive synthesis of membrane proteins and externally by a variety of environmental cues. The Cpx regulon is enriched with genes coding for protein folding and degrading factors, virulence determinants, and large envelope-localized complexes. Transcriptional repression of the two electron transport chain complexes, NADH dehydrogenase I and cytochrome bo3, by the Cpx pathway has been demonstrated, however, there is evidence that additional regulatory mechanisms exist. In this study, we examine the interaction between Cpx-regulated protein folding and degrading factors and the respiratory complexes NADH dehydrogenase I and succinate dehydrogenase in Escherichia coli. Here we show that the cellular need for Cpx-mediated stress adaptation increases when respiratory complexes are more prevalent or active, which is demonstrated by the growth defect of Cpx-deficient strains on media that requires a functional electron transport chain. Interestingly, deletion of several Cpx-regulated proteolytic factors and chaperones results in similar growth-deficient phenotypes. Furthermore, we find that the stability of the NADH dehydrogenase I protein complex is lower in cells with a functional Cpx response, while in its absence, protein turnover is impaired. Finally, we demonstrated that the succinate dehydrogenase complex has reduced activity in E. coli lacking the Cpx pathway. Our results suggest that the Cpx two-component system serves as a sentry of inner membrane protein biogenesis, ensuring the function of large envelope protein complexes and maintaining the cellular energy status of the cell.
Collapse
Affiliation(s)
- Valeria Tsviklist
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Randi L. Guest
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Tracy L. Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Tracy L. Raivio,
| |
Collapse
|
7
|
Gao M, Nakajima An D, Skolnick J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. eLife 2022; 11:82885. [PMID: 36576775 PMCID: PMC9797188 DOI: 10.7554/elife.82885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
To reach their final destinations, outer membrane proteins (OMPs) of gram-negative bacteria undertake an eventful journey beginning in the cytosol. Multiple molecular machines, chaperones, proteases, and other enzymes facilitate the translocation and assembly of OMPs. These helpers usually associate, often transiently, forming large protein assemblies. They are not well understood due to experimental challenges in capturing and characterizing protein-protein interactions (PPIs), especially transient ones. Using AF2Complex, we introduce a high-throughput, deep learning pipeline to identify PPIs within the Escherichia coli cell envelope and apply it to several proteins from an OMP biogenesis pathway. Among the top confident hits obtained from screening ~1500 envelope proteins, we find not only expected interactions but also unexpected ones with profound implications. Subsequently, we predict atomic structures for these protein complexes. These structures, typically of high confidence, explain experimental observations and lead to mechanistic hypotheses for how a chaperone assists a nascent, precursor OMP emerging from a translocon, how another chaperone prevents it from aggregating and docks to a β-barrel assembly port, and how a protease performs quality control. This work presents a general strategy for investigating biological pathways by using structural insights gained from deep learning-based predictions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Davi Nakajima An
- School of Computer Science, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
8
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Sučec I, Bersch B, Schanda P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front Mol Biosci 2021; 8:762005. [PMID: 34760928 PMCID: PMC8573040 DOI: 10.3389/fmolb.2021.762005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.
Collapse
Affiliation(s)
- Iva Sučec
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Beate Bersch
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Paul Schanda
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
11
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
12
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition (CDI) Toxins. mBio 2021; 12:mBio.03367-20. [PMID: 33531386 PMCID: PMC7858069 DOI: 10.1128/mbio.03367-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.
Collapse
|
14
|
Miyazaki R, Akiyama Y, Mori H. Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. eLife 2020; 9:62623. [PMID: 33320090 PMCID: PMC7793623 DOI: 10.7554/elife.62623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
N-Terminal Segment of TvCyP2 Cyclophilin from Trichomonas vaginalis Is Involved in Self-Association, Membrane Interaction, and Subcellular Localization. Biomolecules 2020; 10:biom10091239. [PMID: 32859063 PMCID: PMC7563477 DOI: 10.3390/biom10091239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
In Trichomonas vaginalis (T. vaginalis), cyclophilins play a vital role in dislodging Myb proteins from the membrane compartment and leading them to nuclear translocation. We previously reported that TvCyP1 cyclophilin from T. vaginalis forms a dimer and plays an essential role in moving the Myb1 transcription factor toward the nucleus. In comparison, TvCyP2 containing an extended segment at the N-terminus (N-terminal segment) formed a monomer and showed a different role in regulating protein trafficking. Four X-ray structures of TvCyP2 were determined under various conditions, all showing the N-terminal segment interacting with the active site of a neighboring TvCyP2, an unusual interaction. NMR study revealed that this particular interaction exists in solution as well and also the N-terminal segment seems to interact with the membrane. In vivo study of TvCyP2 and TvCyP2-∆N (TvCyP2 without the N-terminal segment) indicated that both proteins have different subcellular localization. Together, the structural and functional characteristics at the N-terminal segment offer valuable information for insights into the mechanism of how TvCyP2 regulates protein trafficking, which may be applied in drug development to prevent pathogenesis and disease progression in T. vaginalis infection.
Collapse
|
16
|
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 2020; 47:6396-6410. [PMID: 30993322 PMCID: PMC6614838 DOI: 10.1093/nar/gkz274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5′-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | | |
Collapse
|
17
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|