1
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, Dai S, Zhang L, Li X. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol 2024; 69:102983. [PMID: 38064762 PMCID: PMC10755590 DOI: 10.1016/j.redox.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024] Open
Abstract
Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanfang Si
- Department of Ophthalmology, The Eighth Medical Center, Affiliated to the Senior Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100091, China
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiquan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyu Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheming Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Yong
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Yan Z, Zhang Y, Wang C, Li Y, Su Q, Cao J, Cao X. Withaferin a Attenuates Retinal Ischemia-Reperfusion Injury via Akt-Dependent Inhibition of Oxidative Stress. Cells 2022; 11:cells11193113. [PMID: 36231074 PMCID: PMC9563317 DOI: 10.3390/cells11193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Retinal ischemia-reperfusion (I/R) injury often results in intractable visual impairments. The survival of retinal capillary endothelial cells is crucial for the treatment of retinal I/R injury. How to protect retinal endothelia from damage is a challenging work. Withaferin A, a small molecule derived from plants, has antibacterial and anti-inflammatory effects and has been used for about millennia in traditional medicine. The present study aimed to investigate the potential protective effect of withaferin A on retinal I/R injury. Methods: The drug-likeness of withaferin A was evaluated by the SwissADME web tool. The potential protective effect of withaferin A on the I/R-induced injury of human retinal microvascular endothelial cells (HRMECs) was investigated using multiple approaches. RNA sequencing was performed and associated mechanistic signaling pathways were analyzed based on the Kyoto Encyclopedia of Genes and Genomes data. The analytical results of RNA sequencing data were further validated by in vitro and in vivo experiments. Results: Withaferin A reduced the I/R injury-induced apoptotic death of HRMECs in vitro with a good drug-like property. RNA sequencing and experimental validation results indicated that withaferin A increased the production of the crucial antioxidant molecules heme oxygenase 1 (HO-1) and peroxiredoxin 1 (Prdx-1) during I/R. In addition, withaferin A activated the Akt signaling pathway and increased the expression of HO-1 and Prdx-1, thereby exerting an antioxidant effect, attenuated the retinal I/R injury, and decreased the apoptosis of HRMECs. The blockade of Akt completely abolished the effects of withaferin A. Conclusions: The study identified for the first time that withaferin A can protect against the I/R-induced apoptosis of human microvascular retinal endothelial cells via increasing the production of the antioxidants Prdx-1 and HO-1. Results suggest that withaferin A is a promising drug candidate for the treatment of retinal I/R injury.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yuanlin Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China
| | - Chunfang Wang
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yanjie Li
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Su
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoming Cao
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan 030000, China
- Correspondence:
| |
Collapse
|
4
|
Rumman M, Pandey S, Singh B, Gupta M, Mahdi AA. Genistein suppresses microglial activation and inhibits apoptosis in different brain regions of hypoxia-exposed mice model of amnesia. Metab Brain Dis 2022; 37:2521-2532. [PMID: 35895244 DOI: 10.1007/s11011-022-01039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/14/2022] [Indexed: 10/16/2022]
Abstract
Genistein (GE) or 4',5,7-trihydroxyflavone, a plant derived isoflavone, is a biologically active compound having several beneficial properties. Studies showed that GE possesses anti-neoplastic, anti-tumor, anti-helminthic, anti-oxidant, and anti-inflammatory activities. Herein, we investigated the neuroprotective effects of GE in a mouse model of hypoxia-induced amnesia. Mice were exposed to hypoxic conditions (10% O2) in a designated hypoxia chamber and co-treated with GE (10, 20, or 30 mg/kg) for 4 weeks. Following this, behavioral tests were performed to evaluate memory performance. We assessed microglial activation in the hippocampus, amygdala, and pre-frontal cortex (PFC) regions by evaluating the Iba-1 and GFAP transcript levels, and MIP-1β, Cox-2, and IL6 protein levels. Apoptosis was assessed by evaluating Bax, BAD, and Bcl-2 mRNA levels, and caspase-3 activity. To uncover the underlying molecular mechanism, we evaluated the levels of Nrf2, HO-1, and NQO1 in different brain regions of mice from all groups. Results showed that hypoxia-exposed mice have reduced performance in the behavioral tests and GE treatment enhanced the memory performance in hypoxia-exposed mice. Moreover, hypoxia-exposed mice showed increased expression of microglial activation markers and enhanced apoptosis in the hippocampus, amygdala, and PFC. GE treatment suppressed microglial activation and prevented apoptosis in the brain of hypoxia-exposed mice. Furthermore, hypoxia-exposure reduced the expression of Nrf2, NQO1, and HO-1 while GE treatment ameliorated this decrease in different regions of hypoxia-exposed mice brain. In conclusion, GE prevents cognitive dysfunction by suppressing microglial activation and inhibiting apoptosis in the hypoxia-exposed mice brain.
Collapse
Affiliation(s)
- Mohammad Rumman
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, 226025, UP, India
| | - Shivani Pandey
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, 226025, UP, India.
| | - Babita Singh
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, 226025, UP, India
| | - Mrinal Gupta
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, 226025, UP, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, 226025, UP, India
| |
Collapse
|
5
|
Zhang Y, Wang M, Chang W. Iron dyshomeostasis and ferroptosis in Alzheimer’s disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD. Front Pharmacol 2022; 13:983623. [PMID: 36188557 PMCID: PMC9523169 DOI: 10.3389/fphar.2022.983623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system that is the most common type of senile dementia. Ferroptosis is a new type of iron-dependent programmed cell death identified in recent years that is different from other cell death forms. Ferroptosis is induced by excessive accumulation of lipid peroxides and reactive oxygen species (ROS) in cells. In recent years, it has been found that ferroptosis plays an important role in the pathological process of AD. Iron dyshomeostasis contribute to senile plaques (SP) deposition and neurofibrillary tangles (NFTs). Iron metabolism imbalance in brain and the dysfunction of endogenous antioxidant systems including system Xc- and glutathione peroxidase (GPX) are closely related to the etiopathogenesis of AD. Dysfunction of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy induced ferroptosis can accelerates the pathological process of AD. In addition, NRF2, through regulating the expression of a considerable number of genes related to ferroptosis, including genes related to iron and glutathione metabolism, plays an important role in the development of AD. Here, we review the potential interaction between AD and ferroptosis and the major pathways regulating ferroptosis in AD. We also review the active natural and synthetic compounds such as iron chelators, lipid peroxidation inhibitors and antioxidants available to treat AD by alleviating iron dyshomeostasis and preventing ferroptosis in mice and cell models to provide valuable information for the future treatment and prevention of AD.
Collapse
|
6
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
7
|
Westfall AK, Perry BW, Kamal AHM, Hales NR, Kay JC, Sapkota M, Schield DR, Pellegrino MW, Secor SM, Chowdhury SM, Castoe TA. Identification of an integrated stress and growth response signaling switch that directs vertebrate intestinal regeneration. BMC Genomics 2022; 23:6. [PMID: 34983392 PMCID: PMC8725436 DOI: 10.1186/s12864-021-08226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities. RESULTS Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response. We identify specific temporal patterns of metabolic, stress response, and growth pathway activation that direct regeneration and provide evidence for multiple key central regulatory molecules kinases that integrate these signals, including major conserved pathways like mTOR signaling and the unfolded protein response. CONCLUSION Collectively, our results identify a novel switch-like role of stress responses in intestinal regeneration that forms a primary regulatory hub facilitating organ regeneration and could point to potential pathways to understand regenerative capacity in vertebrates.
Collapse
Affiliation(s)
- Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Abu H M Kamal
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Department of Research Development and Commercialization, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jarren C Kay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Madhab Sapkota
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
8
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
9
|
Effects of Acupuncture on Oxidative Stress Amelioration via Nrf2/ARE-Related Pathways in Alzheimer and Parkinson Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6624976. [PMID: 33995547 PMCID: PMC8096560 DOI: 10.1155/2021/6624976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is responsible for the pathogeneses of various diseases. Mitochondrial dysfunction, impaired DNA repair, and cellular damage followed by oxidative stress contribute to neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Acupuncture is a traditional therapy that has been practiced for >3000 years in Asia. Many studies have demonstrated that acupuncture has notable antioxidative, anti-inflammatory, and antiapoptotic effects. However, the exact mechanism remains unclear. Nuclear factor erythroid 2-related factor (Nrf2) is crucial in regulating the redox equilibrium. Activated Nfr2 translocates into the nucleus, binds to the antioxidant response element (ARE), and initiates antioxidative enzyme transcription. In this review, we demonstrated the effects of acupuncture on oxidative stress amelioration in AD and PD animal models through Nrf2/ARE pathway activation and Nrf2/ARE-related pathway regulation. Thus, acupuncture could be a therapeutic option for AD and PD.
Collapse
|
10
|
Reverte M, Eren RO, Jha B, Desponds C, Snäkä T, Prevel F, Isorce N, Lye LF, Owens KL, Gazos Lopes U, Beverley SM, Fasel N. The antioxidant response favors Leishmania parasites survival, limits inflammation and reprograms the host cell metabolism. PLoS Pathog 2021; 17:e1009422. [PMID: 33765083 PMCID: PMC7993605 DOI: 10.1371/journal.ppat.1009422] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Marta Reverte
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Baijayanti Jha
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Katherine L. Owens
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Ulisses Gazos Lopes
- Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
11
|
Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev 2020; 64:101206. [PMID: 33144124 DOI: 10.1016/j.arr.2020.101206] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the main cause of dementia. Common hallmarks of AD include the amyloid β-peptide (Aβ) aggregation, high levels of hyperphosphorylated tau protein (p-tau) and failure in redox homeostasis. To date, all proposed drugs affecting Aβ and/or p-tau have been failed in clinical trials. A decline in the expression of the transcription factor Nrf2 (nuclear factor-erythroid 2-p45 derived factor 2) and its driven genes (NQO1, HO-1, and GCLC), and alteration of the Nrf2-related pathways have been observed in AD brains. Nrf2 plays a critical role in maintaining cellular redox homeostasis and regulating inflammation response. Nrf2 activation also provides cytoprotection against increasing pathologies including neurodegenerative diseases. These lines of evidence imply that Nrf2 activation may be a novel AD treatment option. Interestingly, recent studies have also demonstrated that Nrf2 interferes with several key pathogenic processes in AD including Aβ and p-tau pathways. The current review aims to provide insights into the role of Nrf2 in AD. Also, we discuss the progress and challenges regarding the Nrf2 activators for AD treatment.
Collapse
Affiliation(s)
- Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Juan Yao
- School of pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
13
|
Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020; 9:cells9030553. [PMID: 32120776 PMCID: PMC7140419 DOI: 10.3390/cells9030553] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.
Collapse
|
14
|
Bovine Herpesvirus 1 Productive Infection Led to Inactivation of Nrf2 Signaling through Diverse Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4957878. [PMID: 31687081 PMCID: PMC6800938 DOI: 10.1155/2019/4957878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 01/09/2023]
Abstract
Bovine herpesvirus type 1 (BoHV-1) is a significant cofactor for bovine respiratory disease complex (BRDC), the most important inflammatory disease in cattle. BoHV-1 infection in cell cultures induces overproduction of pathogenic reactive oxygen species (ROS) and the depletion of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a master transcriptional factor regulating a panel of antioxidant and cellular defense genes in response to oxidative stress. In this study, we reported that the virus productive infection in MDBK cells at the later stage significantly decreased the expression levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1) proteins, the canonical downstream targets regulated by Nrf2, inhibited Nrf2 acetylation, reduced the accumulation of Nrf2 proteins in the nucleus, and relocalized nuclear Nrf2 proteins to form dot-like staining patterns in confocal microscope assay. The differential expression of Kelch-like ECH associated protein 1 (KEAP1) and DJ-1 proteins as well as the decreased association between KEAP1 and DJ-1 promoted Nrf2 degradation through the ubiquitin proteasome pathway. These data indicated that the BoHV-1 infection may significantly suppress the Nrf2 signaling pathway. Moreover, we found that there was an association between Nrf2 and LaminA/C, H3K9ac, and H3K18ac, and the binding ratios were altered following the virus infection. Taken together, for the first time, we provided evidence showing that BoHV-1 infection inhibited the Nrf2 signaling pathway by complicated mechanisms including promoting Nrf2 degradation, relocalization of nuclear Nrf2, and inhibition of Nrf2 acetylation.
Collapse
|
15
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
16
|
Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Res Rev 2019; 54:100942. [PMID: 31415806 DOI: 10.1016/j.arr.2019.100942] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3β, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.
Collapse
|