1
|
Fu W, Liu G, Kim SH, Kim B, Kim OS, Ma G, Yang Y, Liu D, Zhu S, Kang JS, Kim O. Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1. Photochem Photobiol 2024; 100:1408-1418. [PMID: 38214077 DOI: 10.1111/php.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
2
|
Witwit H, Khafaji R, Salaniwal A, Kim AS, Cubitt B, Jackson N, Ye C, Weiss SR, Martinez-Sobrido L, de la Torre JC. Activation of protein kinase receptor (PKR) plays a pro-viral role in mammarenavirus-infected cells. J Virol 2024; 98:e0188323. [PMID: 38376197 PMCID: PMC10949842 DOI: 10.1128/jvi.01883-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Arul Salaniwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Arthur S. Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Kubickova A, De Sanctis JB, Hajduch M. Isoform-Directed Control of c-Myc Functions: Understanding the Balance from Proliferation to Growth Arrest. Int J Mol Sci 2023; 24:17524. [PMID: 38139353 PMCID: PMC10743581 DOI: 10.3390/ijms242417524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The transcription factor c-Myc, a key regulator of cellular processes, has long been associated with roles in cell proliferation and apoptosis. This review analyses the multiple functions of c-Myc by examining the different c-Myc isoforms in detail. The impact of different c-Myc isoforms, in particular p64 and p67, on fundamental biological processes remains controversial. It is necessary to investigate the different isoforms in the context of proto-oncogenesis. The current knowledge base suggests that neoplastic lesions may possess the means for self-destruction via increased c-Myc activity. This review presents the most relevant information on the c-Myc locus and focuses on a number of isoforms, including p64 and p67. This compilation provides a basis for the development of therapeutic approaches that target the potent growth arresting and pro-apoptotic functions of c-Myc. This information can then be used to develop targeted interventions against specific isoforms with the aim of shifting the oncogenic effects of c-Myc from pro-proliferative to pro-apoptotic. The research summarised in this review can deepen our understanding of how c-Myc activity contributes to different cellular responses, which will be crucial in developing effective therapeutic strategies; for example, isoform-specific approaches may allow for precise modulation of c-Myc function.
Collapse
Affiliation(s)
- Agata Kubickova
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| |
Collapse
|
4
|
Carvajal Ibañez D, Skabkin M, Hooli J, Cerrizuela S, Göpferich M, Jolly A, Volk K, Zumwinkel M, Bertolini M, Figlia G, Höfer T, Kramer G, Anders S, Teleman AA, Marciniak-Czochra A, Martin-Villalba A. Interferon regulates neural stem cell function at all ages by orchestrating mTOR and cell cycle. EMBO Mol Med 2023; 15:e16434. [PMID: 36636818 PMCID: PMC10086582 DOI: 10.15252/emmm.202216434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Stem cells show intrinsic interferon signalling, which protects them from viral infections at all ages. In the ageing brain, interferon signalling also reduces the ability of stem cells to activate. Whether these functions are linked and at what time interferons start taking on a role in stem cell functioning is unknown. Additionally, the molecular link between interferons and activation in neural stem cells and how this relates to progenitor production is not well understood. Here we combine single-cell transcriptomics, RiboSeq and mathematical models of interferon to show that this pathway is important for proper stem cell function at all ages in mice. Interferon orchestrates cell cycle and mTOR activity to post-transcriptionally repress Sox2 and induces quiescence. The interferon response then decreases in the subsequent maturation states. Mathematical simulations indicate that this regulation is beneficial for the young and harmful for the old brain. Our study establishes molecular mechanisms of interferon in stem cells and interferons as genuine regulators of stem cell homeostasis and a potential therapeutic target to repair the ageing brain.
Collapse
Affiliation(s)
- Damian Carvajal Ibañez
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maxim Skabkin
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jooa Hooli
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
| | - Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Göpferich
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Adrien Jolly
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Volk
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zumwinkel
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matilde Bertolini
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gianluca Figlia
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guenter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Anders
- Bioquant, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center of Scientific Computing (IWR) and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
6
|
Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells 2021; 10:cells10113255. [PMID: 34831477 PMCID: PMC8625526 DOI: 10.3390/cells10113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.
Collapse
Affiliation(s)
- Manuela Piazzi
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Vittoria Cenni
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche and Neuromotorie, Università di Bologna, 40136 Bologna, Italy;
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
7
|
Lyu W, Li Q, Li Q, Chen Y, Wang Y, Tang T, Feng F, Chi H, Li Y, Liu W, Sun H. Design, Bio-evaluation and Molecular Dynamics Simulation of Novel GSK-3β Inhibitors. Mol Inform 2021; 40:e2060031. [PMID: 34323388 DOI: 10.1002/minf.202060031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is considered as a promising drug target for the treatment of Alzheimer's disease (AD). In the present study, two compound libraries were selected for virtual screening based on pharmacophore models of GSK-3β to discover new inhibitors. Nine potential hits were retained for biological investigation and four of these compounds showed GSK-3β inhibitory activity (with the IC50 values in sub-micromolar range on GSK-3β). Compounds 6 and 9 have good safety. They do not have any significant in vitro cytotoxicity against PC12 and SH-SY5Y neuroblastoma cells at concentrations up to 90 μM. Based on the inhibitory activity and druggability properties, compound 8 is the preferred molecule, and it is a promising lead for the development of the GSK-3β inhibitors for reducing the abnormal hyperphosphorylation of tau protein and relieving AD.
Collapse
Affiliation(s)
- Weiping Lyu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yingming Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tongzhong Tang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Feng Feng
- Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Huaian, 223003, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian, 223003, People's Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian, 223005, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.,Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou, 310018
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
8
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
9
|
Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021; 14:1717-1730. [PMID: 33986607 PMCID: PMC8111165 DOI: 10.2147/jir.s300806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. Materials and Methods For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/β-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. Results Constitutive GSK3β and PKCβ expression and GSK3α/β-Ser21/9 and PKCα/βII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/β-knockdown modestly increased, whereas GSK3α/β-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/β-Ser176/180 phosphorylation were not affected. Moreover, PKCβ-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. Conclusion Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 – either pathophysiologically or pharmacologically induced – may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Mareike Diekmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|