1
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Wang L, Sun T, Liu X, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocarditis: A multi-omics approach. Clin Chim Acta 2024; 554:117752. [PMID: 38184138 DOI: 10.1016/j.cca.2023.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Myocarditis, an inflammatory condition of weakened heart muscles often triggered by a variety of causes, that can result in heart failure and sudden death. Novel ways to enhance our understanding of myocarditis pathogenesis is available through newer modalities (omics). In this review, we examine the roles of various biomolecules and associated functional pathways across genomics, transcriptomics, proteomics, and metabolomics in the pathogenesis of myocarditis. Our analysis further explores the reproducibility and variability intrinsic to omics studies, underscoring the necessity and significance of employing a multi-omics approach to gain profound insights into myocarditis pathogenesis. This integrated strategy not only enhances our understanding of the disease, but also confirms the critical importance of a holistic multi-omics approach in disease analysis.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Tian L, Li H, Zhao P, Liu Y, Lu Y, Zhong R, Jin Y, Tan T, Cheng Y. C-Myc-induced hypersialylation of small cell lung cancer facilitates pro-tumoral phenotypes of macrophages. iScience 2023; 26:107771. [PMID: 37731607 PMCID: PMC10507237 DOI: 10.1016/j.isci.2023.107771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Immunosuppressive myeloid cell populations have been documented in small cell lung cancer (SCLC) subtypes, playing a key role in remolding the tumor microenvironment (TME). However, the cancer-associated transcriptional features of monocytes and tumor-associated macrophages (TAMs) in SCLC remain poorly understood. Herein, we analyzed the molecular features and functions of monocyte/macrophage subsets aiming to inhibit monocyte recruitment and pro-tumor behavior of macrophages. We observe that NEUROD1-high SCLC subtype (SCLC-N) exhibits subtype-specific hypersialylation induced by the unique target c-Myc (MYC) of NEUROD1. The hypersialylation can alter macrophage phenotypes and pro-tumor behavior by regulating the expression of the immune-inhibiting lectin receptors on monocyte-derived macrophages (MDMs) in SCLC-N. Inhibiting the aberrant sialic acid metabolic pathways in SCLC can significantly enhance the phagocytosis of macrophages. This study provides a comprehensive overview of the cancer-specific immune signature of monocytes and macrophages and reveals tumor-associated biomarkers as potential therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Lin Tian
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Peiyan Zhao
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuanhua Lu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yulong Jin
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Cheng
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
4
|
Uwai Y, Nabekura T. Data Mining for Risks of Clozapine Side Effects, Including Neutropenia, Associated with Lithium Carbonate Administration: Analysis Using the Japanese Adverse Drug Event Report Database. Drugs Real World Outcomes 2023; 10:481-489. [PMID: 37378859 PMCID: PMC10491564 DOI: 10.1007/s40801-023-00377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Clozapine use is associated with development of neutropenia, and lithium carbonate may be co-administered to reduce this risk; however, this has not yet been adequately investigated. The present study examined whether lithium administration is associated with the risks of clozapine side effects, including neutropenia. METHODS Data on patients taking clozapine, extracted from the Japanese Adverse Drug Event Report (JADER) database, were analyzed. Patients who developed clozapine side effects were identified by the Standardized Medical Dictionary for Regulatory Activities Queries. The relationship between the use of lithium and risk of clozapine side effects was examined using logistic regression analysis. RESULTS The use of lithium was reported in 530 out of 2,453 clozapine users. Hematopoietic leukopenia, convulsion, and noninfectious myocarditis/pericarditis developed in 109, 87, and seven lithium-treated patients, and in 335, 173, and 62 untreated patients, respectively. Univariate analysis showed no relationship between lithium administration and the risks of hematopoietic leukopenia (adjusted odds ratio (aOR) 1.11; 95% confidence interval (CI) 0.98-1.25), and the association with the risks of convulsion (aOR 1.41; 95% CI 1.23-1.62) and noninfectious myocarditis/pericarditis (aOR 0.63; 95% CI 0.43-0.94). Multivariate analysis revealed that lithium use was independently associated with the risks of convulsion (aOR 1.40; 95% CI 1.21-1.60) and noninfectious myocarditis/pericarditis (aOR 0.62; 95% CI 0.41-0.91). CONCLUSION The risks of seizure and myocarditis, but not of neutropenia, in clozapine-treated patients may be altered by lithium. Although the JADER database is based on spontaneous reporting, the present results warrant further study.
Collapse
Affiliation(s)
- Yuichi Uwai
- School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto, Chikusa, Nagoya, 464-8650, Japan.
| | - Tomohiro Nabekura
- School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto, Chikusa, Nagoya, 464-8650, Japan
| |
Collapse
|
5
|
Aslan A, Gok O, Beyaz S, Parlak G, Can MI, Gundogdu R, Baspinar S, Ozercan IH, Parlak AE. Royal jelly arranges apoptotic and oxidative stress pathways and reduces damage to liver tissues of rats by down-regulation of Bcl-2, GSK3 and NF-κB and up-regulation of caspase and Nrf-2 protein signalling pathways. Biomarkers 2023; 28:217-226. [PMID: 36520139 DOI: 10.1080/1354750x.2022.2159526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IntroductionRoyal jelly (RJ) from the honey bee, Apis mellifera, is a traditional product that is widely used as a food supplement to support the medical treatment of various diseases.Material and methodsOur study continued for 8 weeks. 42 Wistar albino (8 weeks old) male rats were used in the study. The study included 6 groups; Group 1: Control group (fed with standard diet), Group 2: RJ (100 mg/kg, bw), Group 3: F-50 (50 mg/kg, bw), group 4: F-100 (100 mg/kg, bw) group 5: F-50 (50 mg/kg, bw) + RJ (100 mg/kg, bw) Group 6: F-100 (100 mg/kg, bw) + RJ (100 mg/kg, bw). Malondialdehyde (MDA), catalase (CAT) and glutathione (GSH) activities in liver tissue were determined by spectrophotometer. Liver tissue samples were examined histopathologically and various protein levels were determined by Western blotting technique.ResultsRJ caused a significant decrease in MDA level, Bcl-2, GSK3 and NF-κB protein expression levels, whereas induced a significant increase in GSH level, CAT activities and Bax, BDNF, caspase-6, caspase-3, Nrf-2 protein expression levels.ConclusionOur findings suggest RJ to be used as a hepatoprotective agent in the clinic to modulate the toxic effects of fluoride and other chemicals in the future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Faculty of Science, Department of Biology, Inonu University, Malatya, Turkey
| | - Ramazan Gundogdu
- Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, 12000, Turkey
| | - Serpil Baspinar
- Department of Medical Imaging, Health Services Vocational High School, Firat University, Elazig, Turkey
| | | | - Akif Evren Parlak
- Department of Environmental Protection Technologies, Keban Vocational School, Firat University, Elazig, Turkey
| |
Collapse
|
6
|
Zheng F, Wu X, Zhang J, Fu Z. Sevoflurane suppresses NLRP3 inflammasome-mediated pyroptotic cell death to attenuate lipopolysaccharide-induced acute lung injury through inducing GSK-3β phosphorylation and activation. Int Immunopharmacol 2022; 109:108800. [PMID: 35550264 DOI: 10.1016/j.intimp.2022.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Pyroptosis is a type of programmed cell death, and pyroptosis-associated inflammatory response is closely associated with the pathogenesis of acute lung injury (ALI). Sevoflurane, a common clinical anesthetic, has been reported as therapeutic drug for ALI. However, the detailed mechanisms by which sevoflurane ameliorates ALI have not been fully delineated. In this study, we found that sevoflurane phosphorylated and activated the GSK-3β to suppress LPS-induced pyroptotic cell death, inflammation and ALI. Specifically, in the LPS-induced ALI mice models, sevoflurane attenuated lung damages and fibrosis, and restrained the production of the pro-inflammatory cytokines. Also, LPS increased the expression levels of pyroptosis-related proteins to promote pyroptotic cell death in ALI mice lung tissues, and LPS-induced pyroptotic cell death was reduced by sevoflurane co-treatment. Moreover, the potential underlying mechanisms were uncovered, and we illustrated that sevoflurane promoted GSK-3β activation in LPS-treated ALI mice lung tissues, and re-activation of GSK-3β by the PI3K/Akt pathway inhibitor LY294002 suppressed LPS-induced pyroptotic cell death in vivo. Consistently, in the in vitro macrophages, our data hinted that LPS-induced pyroptotic cell death were also reversed by sevoflurane. Collectively, the above results suggest that sevoflurane re-activated GSK-3β to suppress LPS-induced pyroptotic cell death, inflammation and ALI.
Collapse
Affiliation(s)
- Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
7
|
Jiang H, Ding Y, Wu L, Jiang C, Wang C. The roles and diagnostic value of miRNA-1246 in the serum of patients with intracranial aneurysms. Transl Neurosci 2022; 13:172-180. [PMID: 35860808 PMCID: PMC9267307 DOI: 10.1515/tnsci-2022-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Inflammatory response is one of the important factors affecting the formation of intracranial aneurysm. miR-1246 is involved in the regulation of several inflammatory diseases; however, its expression levels and the mechanism of action in intracranial aneurysms remain further investigated. Methods Bioinformatics was used to analyze the levels of micro-RNAs (miRNAs) in the serum of intracranial aneurysm patients as well as in the intracranial aneurysm tissues downloaded from the GEO RNA-seq database. Blood samples were collected pre-operatively from patients with intracranial aneurysms as well as from healthy volunteers, and miRNA-1246 expression levels were detected using quantitative reverse transcriptase polymerase chain reaction. Meanwhile, the diagnostic value of miR-1246 for intracranial aneurysm was explored using the receiver operating characteristic (ROC) curve. Principle findings and results Serum levels of miR-1246 were elevated in intracranial aneurysm patients. Bioinformatics studies revealed that the target genes of miR-1246, TP53, glycogen synthetase kinase (GSK), and transcription factor YY1 may play important roles in the development of intracranial aneurysms. miR-1246 is involved in inflammatory response, lipid, and atherosclerotic signaling pathways. Conclusions and significance High level of miR-1246 is found in the serum of patients with intracranial aneurysms and may serve as a diagnostic or/and treatment marker for intracranial aneurysms.
Collapse
Affiliation(s)
- Haijie Jiang
- Department of Medical Laboratory, Weifang Medical University, Molecular Biological Diagnosis of Cerebrovascular Disease, Weifang, China
| | - Yansheng Ding
- Clinical laboratory, Weifang People's Hospital, Weifang, China
| | - Lili Wu
- Neurology department, Weifang People's Hospital, Weifang, China
| | - Chunyan Jiang
- Clinical laboratory, Weifang People's Hospital, Weifang, China
| | - Chengdong Wang
- Clinical Laboratory, Weifang People's Hospital, Diagnosis by Clinical Examination, Weifang, China
| |
Collapse
|