1
|
Peng M, Wang T, Li Y, Zhang Z, Wan C. Mapping start codons of small open reading frames by N-terminomics approach. Mol Cell Proteomics 2024:100860. [PMID: 39419446 DOI: 10.1016/j.mcpro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.
Collapse
Affiliation(s)
- Mingbo Peng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Tianjing Wang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
2
|
Mitsunaga S, Okumura N, Takei T, Takao T, Tsubouchi H, Nakata K, Nakamura M, Kitahata Y, Motobayashi H, Ikeda M, Nakazato M. Identification of a urinary CD276 fragment for detecting resectable pancreatic cancer using a C-terminal proteomics strategy. Sci Rep 2024; 14:14207. [PMID: 38902359 PMCID: PMC11190254 DOI: 10.1038/s41598-024-65093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to confirm urinary protein fragments in relation to the presence of pancreatic ductal adenocarcinoma (PDAC) via a C-terminal proteomics strategy using exploratory and validation cohorts. Urinary fragments were examined by iTRAQ-labelling of tryptic peptides and concentrations of C-terminal fragments were evaluated. Only the urinary CD276 fragment showed a fold change (FC) of > 1.5 with a significant difference of P < 0.01 between healthy (H) and PDAC participants in both the exploratory (H, n = 42; PDAC, n = 39) and validation cohorts (H, n = 36; resectable PDAC, n = 28). The sensitivity and specificity of the CD276 fragment for diagnosing resectable PDAC were 75% and 89%, respectively, in the validation cohort. Postoperative urinary levels of the CD276 fragment were low as compared to those before surgery (n = 18, P < 0.01). Comprehensive C-terminus proteomics identified an increase in the urinary CD276 fragment level as a feature of patients with PDAC. The urinary CD276 fragment is a potential biomarker for detecting resectable PDAC.
Collapse
Affiliation(s)
- Shuichi Mitsunaga
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Hironobu Tsubouchi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University, Fukuoka, Japan
| | - Yuji Kitahata
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hideki Motobayashi
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Science, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan.
| |
Collapse
|
3
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Wang XY, Xu YM, Lau ATY. Proteogenomics in Cancer: Then and Now. J Proteome Res 2023; 22:3103-3122. [PMID: 37725793 DOI: 10.1021/acs.jproteome.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.
Collapse
Affiliation(s)
- Xiu-Yun Wang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| |
Collapse
|
5
|
Lange PF, Schilling O, Huesgen PF. Positional proteomics: is the technology ready to study clinical cohorts? Expert Rev Proteomics 2023; 20:309-318. [PMID: 37869791 DOI: 10.1080/14789450.2023.2272046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Positional proteomics provides proteome-wide information on protein termini and their modifications, uniquely enabling unambiguous identification of site-specific, limited proteolysis. Such proteolytic cleavage irreversibly modifies protein sequences resulting in new proteoforms with distinct protease-generated neo-N and C-termini and altered localization and activity. Misregulated proteolysis is implicated in a wide variety of human diseases. Protein termini, therefore, constitute a huge, largely unexplored source of specific analytes that provides a deep view into the functional proteome and a treasure trove for biomarkers. AREAS COVERED We briefly review principal approaches to define protein termini and discuss recent advances in method development. We further highlight the potential of positional proteomics to identify and trace specific proteoforms, with a focus on proteolytic processes altered in disease. Lastly, we discuss current challenges and potential for applying positional proteomics in biomarker and pre-clinical research. EXPERT OPINION Recent developments in positional proteomics have provided significant advances in sensitivity and throughput. In-depth analysis of proteolytic processes in clinical cohorts thus appears feasible in the near future. We argue that this will provide insights into the functional state of the proteome and offer new opportunities to utilize proteolytic processes altered or targeted in disease as specific diagnostic, prognostic and companion biomarkers.
Collapse
Affiliation(s)
- Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Cassidy L, Kaulich PT, Tholey A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. iScience 2023; 26:106069. [PMID: 36818287 PMCID: PMC9929600 DOI: 10.1016/j.isci.2023.106069] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microproteins and short open reading frame-encoded peptides (SEPs) can, like all proteins, carry numerous posttranslational modifications. Together with posttranscriptional processes, this leads to a high number of possible distinct protein molecules, the proteoforms, out of a limited number of genes. The identification, quantification, and molecular characterization of proteoforms possess special challenges to established, mainly bottom-up proteomics (BUP) based analytical approaches. While BUP methods are powerful, proteins have to be inferred rather than directly identified, which hampers the detection of proteoforms. An alternative approach is top-down proteomics (TDP) which allows to identify intact proteoforms. This perspective article provides a brief overview of modified microproteins and SEPs, introduces the proteoform terminology, and compares present BUP and TDP workflows highlighting their major advantages and caveats. Necessary future developments in TDP to fully accentuate its potential for proteoform-centric analytics of microproteins and SEPs will be discussed.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany,Corresponding author
| |
Collapse
|
7
|
Zhai L, Wang L, Hu H, Liu Q, Lee S, Tan M, Zhang Y. PBC, an easy and efficient strategy for high-throughput protein C-terminome profiling. Front Cell Dev Biol 2022; 10:995590. [PMID: 36120566 PMCID: PMC9471192 DOI: 10.3389/fcell.2022.995590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput profiling of protein C-termini is still a challenging task. Proteomics provides a powerful technology for systematic and high-throughput study of protein C-termini. Various C-terminal peptide enrichment strategies based on chemical derivatization and chromatography separation have been reported. However, they are still costly and time-consuming, with low enrichment efficiency for C-terminal peptides. In this study, by taking advantage of the high reaction selectivity of 2-pyridinecarboxaldehyde (2-PCA) with an α-amino group on peptide N-terminus and high affinity between biotin and streptavidin, we developed a 2-PCA- and biotin labeling-based C-terminomic (PBC) strategy for a high-efficiency and high-throughput analysis of protein C-terminome. Triplicates of PBC experiments identified a total of 1,975 C-terminal peptides corresponding to 1,190 proteins from 293 T cell line, which is 180% higher than the highest reported number of C-terminal peptides identified from mammalian cells by chemical derivatization-based C-terminomics study. The enrichment efficiency (68%) is the highest among the C-terminomics methods currently reported. In addition, we not only uncovered 50 proteins with truncated C-termini which were significantly enriched in extracellular exosome, vesicle, and ribosome by a bioinformatic analysis but also systematically characterized the whole PTMs on C-terminal in 293 T cells, suggesting PBC as a powerful tool for protein C-terminal degradomics and PTMs investigation. In conclusion, the PBC strategy would benefit high-efficiency and high-throughput profiling of protein C-terminome.
Collapse
Affiliation(s)
- Linhui Zhai
- School of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Le Wang
- School of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Quan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sangkyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Minjia Tan
- School of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yinan Zhang
- School of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Winkels K, Koudelka T, Kaulich PT, Leippe M, Tholey A. Validation of Top-Down Proteomics Data by Bottom-Up-Based N-Terminomics Reveals Pitfalls in Top-Down-Based Terminomics Workflows. J Proteome Res 2022; 21:2185-2196. [PMID: 35972260 DOI: 10.1021/acs.jproteome.2c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.
Collapse
Affiliation(s)
- Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
9
|
Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht SS, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022; 79:185. [PMID: 35279766 PMCID: PMC8918473 DOI: 10.1007/s00018-022-04163-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
Abstract
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
Collapse
Affiliation(s)
- Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Fenja H Bahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sarah-Sophie Schacht
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Daniel Meisinger
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Marion Mengel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Anna Hofmann
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Lukas Heintz
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|