1
|
Wei J, Xu S, Liu Y, Zhang L, Chen H, Li J, Duan M, Niu Z, Huang M, Zhang D, Zhou X, Xie J. TGF-β2 enhances glycolysis in chondrocytes via TβRI/p-Smad3 signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119788. [PMID: 38879132 DOI: 10.1016/j.bbamcr.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-β2 (TGF-β2), one of the most abundant TGF-β superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-β superfamily members on cell metabolism, whether and how TGF-β2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-β2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-β2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-β2 signal entered chondrocytes via TGF-β receptor type I (TβRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TβRI and p-Smad3 further substantiated the role of TGF-β2 in enhancement of glycolysis via TβRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-β superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.
Collapse
Affiliation(s)
- Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Yao L, Li Y, Fu D, Wang Y, Hua C, Zou L, Jiang L. The damage and remineralization strategies of dental hard tissues following radiotherapy. BMC Oral Health 2024; 24:805. [PMID: 39014355 PMCID: PMC11253375 DOI: 10.1186/s12903-024-04561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES This study pursued two main purposes. The first aim was to expound on the microscopic factors of radiation-related caries (RRC). Further, it aimed to compare the remineralization effect of different remineralizing agents on demineralized teeth after radiotherapy. METHODS The enamel and dentin samples of bovine teeth were irradiated with different doses of radiation. After analysis of scanning electron microscope (SEM), X-Ray diffraction (XRD), and energy dispersive spectrometer (EDS), the samples irradiated with 50 Gy radiation were selected and divided into the demineralization group, the double distilled water (DDW) group, the Sodium fluoride (NaF) group, the Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) group, the NaF + CPP-ACP group, and the Titanium tetrafluoride (TiF4) group. After demineralization, remineralizing agents treatment, and remineralization, the samples were evaluated using SEM, atomic force microscope (AFM), EDS, and transverse microradiography (TMR). RESULTS A radiation dose of 30 Gy was sufficient to cause damage to the dentinal tubules, but 70 Gy radiation had little effect on the microstructure of enamel. Additionally, the NaF + CPP-ACP group and the TiF4 group significantly promoted deposit formation, decreased surface roughness, and reduced mineral loss and lesion depth of demineralized enamel and dentin samples after radiation. CONCLUSIONS Radiation causes more significant damage to dentin compared to enamel. NaF + CPP-ACP and TiF4 had a promising ability to promote remineralization of irradiated dental hard tissues. ADVANCES IN KNOWLEDGE This in vitro study contributes to determining a safer radiation dose range for teeth and identifying the most effective remineralization approach for RRC.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Chengge Hua
- State Key Laboratory of Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Xu S, Wei J, Liu Y, Zhang L, Duan M, Li J, Niu Z, Pu X, Huang M, Chen H, Zhou X, Xie J. PDGF-AA guides cell crosstalk between human dental pulp stem cells in vitro via the PDGFR-α/PI3K/Akt axis. Int Endod J 2024; 57:549-565. [PMID: 38332717 DOI: 10.1111/iej.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
AIM To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.
Collapse
Affiliation(s)
- Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
5
|
Wang MY, Liu WJ, Wu LY, Wang G, Zhang CL, Liu J. The Research Progress in Transforming Growth Factor-β2. Cells 2023; 12:2739. [PMID: 38067167 PMCID: PMC10706148 DOI: 10.3390/cells12232739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Wen-Juan Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Gang Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| |
Collapse
|
6
|
Cao X, Cai L, Guo D, Zhang D, Zhou X, Xie J. Fibroblast growth factor 8 facilitates cell-cell communication in chondrocytes via p38-MAPK signaling. Tissue Cell 2023; 83:102155. [PMID: 37451010 DOI: 10.1016/j.tice.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Gap junction intercellular communication (GJIC) is essential for regulating the development of the organism and sustaining the internal environmental homeostasis of multi-cellular tissue. Fibroblast growth factor 8 (FGF8), an indispensable regulator of the skeletal system, is implicated in regulating chondrocyte growth, differentiation, and disease occurrence. However, the influence of FGF8 on GJIC in chondrocytes is not yet known. The study aims to investigate the role of FGF8 on cell-cell communication in chondrocytes and its underlying biomechanism. We found that FGF8 facilitated cell-cell communication in living chondrocytes by the up-regulation of connexin43 (Cx43), the major fundamental component unit of gap junction channels in chondrocytes. FGF8 activated p38-MAPK signaling to increase the expression of Cx43 and promote the cell-cell communication. Inhibition of p38-MAPK signaling impaired the increase of Cx43 expression and cell-cell communication induced by FGF8, indicating the importance of p38-MAPK signaling. These results help to understand the role of FGF8 on cell communication and provide a potential cue for the treatment of cartilage diseases.
Collapse
Affiliation(s)
- Xiaoling Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lang Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Zuo T, Liu Y, Duan M, Pu X, Huang M, Zhang D, Xie J. Platelet-derived growth factor PDGF-AA upregulates connexin 43 expression and promotes gap junction formations in osteoblast cells through p-Akt signaling. Biochem Biophys Rep 2023; 34:101462. [PMID: 37025987 PMCID: PMC10070375 DOI: 10.1016/j.bbrep.2023.101462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Gap junctions, which are mainly composed of connexin units, play an indispensable role in cell morphogenesis, proliferation, migration, adhesion and differentiation of osteoblast lineage cells, and thus mediate bone development, homeostasis and disease occurrence. Platelet-derived growth factor-AA (PDGF-AA) is proved to have a great influence on osteoblast cell lines and is widely applied in the field of bone defect and wound healing. However, the role of PDGF-AA on gap junction formation in the osteoblast lineage remains elusive. In the current study, we aimed to investigate the impact of PDGF-AA on gap junction formation and cell-to-cell communication in the osteoblast lineage and explore its underlying biomechanism. We first found that PDGF-AA promoted cell proliferation and thus increased gap junction formations in living primary osteoblasts and MC3T3-E1 cells through scrape loading and dye transfer (SL/DT) assay. We then confirmed that PDGF-AA enhanced gap junction formations through up-regulation of connexin 43 (Cx43). We next detected the activation of p-Akt signaling in primary osteoblasts and MC3T3-E1 cells that were induced by PDGF-AA. Through inhibitory experiments, we further confirmed that PDGF-AA-mediated gap junction formation occurred via the activation of PI3K/Akt signaling. Taking together, our results provided evidences that PDGF-AA promoted gap junction formation in the osteoblast lineage through p-Akt signaling, which helped to understand the role of PDGF-AA in bone regeneration and diseases.
Collapse
Affiliation(s)
- Tao Zuo
- Orthopedics Department, First Clinical College, Xuzhou Medical University, Jiangsu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
10
|
Cai L, Pi C, Guo D, Li J, Chen H, Zhang D, Zhou X, Xie J. TGF-β3 enhances cell-to-cell communication in chondrocytes via the ALK5/p-Smad3 axis. Biochem Biophys Res Commun 2022; 636:64-74. [DOI: 10.1016/j.bbrc.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
11
|
Dynamics of Connexin 43 Down Modulation in Human Articular Chondrocytes Stimulated by Tumor Necrosis Factor Alpha. Int J Mol Sci 2022; 23:ijms23105575. [PMID: 35628386 PMCID: PMC9142923 DOI: 10.3390/ijms23105575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (−46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-β1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-β1. These findings suggest a possible involvement of Cx43 perturbation during joint inflammation.
Collapse
|