1
|
Wang X, Shao S, Zhang T, Zhang Q, Yang D, Zhao J. Effects of exposure to nanoplastics on the gill of mussels Mytilus galloprovincialis: An integrated perspective from multiple biomarkers. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106174. [PMID: 37708618 DOI: 10.1016/j.marenvres.2023.106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The pervasive presence of nanoplastics (NPs) in marine environments poses a threat to marine organisms. Gills, as the organ in direct contact with the environment in marine invertebrates, maybe the first to accumulate NPs. To date, the toxic effects of NPs on the gills of marine invertebrates are still largely unknown. In this study, the response of multiple biomarkers (i.e., total antioxidant capacity, the activity of acetylcholine, ion content and transport enzyme, metabolic enzymes, and lipids content) in mussels Mytilus galloprovincialis exposed to polystyrene nanoplastics (PS-NPs) for 7 days were evaluated. Significant inductions of total antioxidant capacity (T-AOC) and inhibition of acetylcholine (AChE) activity were detected after 7 days of PS-NPs exposure. PS-NPs also triggered significant alteration in ion content (Na+ and K+) and suppressed the activities of the ion transport enzyme (Na+/K+-ATPase). Moreover, we found the activity of metabolic enzymes (succinate dehydrogenase and pyruvate kinase) and lipids content (triacylglycerol and cholesterol) were significantly altered, suggesting the interference of PS-NPs on energy metabolism and lipid metabolism. This investigation provides substantial information to understand the physical responses of invertebrate gills to PS-NPs exposure. Given the crucial ecological roles of invertebrates, the presence of PS-NPs in the marine environment may have far-reaching impacts on population abundance, biodiversity, and stability of the marine ecosystem.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
2
|
Li FY, Zhang ZF, Voss S, Wu YW, Zhao YF, Li YM, Chen YX. Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chem Sci 2019; 11:826-832. [PMID: 34123058 PMCID: PMC8145430 DOI: 10.1039/c9sc04726c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B–PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein–PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B–PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics. A membrane ld microdomain-targeting hybrid peptide displays potent inhibition effect toward K-Ras4B-plasma membrane interaction and impairs Ras signaling output.![]()
Collapse
Affiliation(s)
- Fang-Yi Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhen-Feng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences No. 1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Stephanie Voss
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany.,Department of Chemistry, Umeå University 90187 Umeå Sweden
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Farhat E, Turenne ED, Choi K, Weber JM. Hypoxia-induced remodelling of goldfish membranes. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110326. [PMID: 31465877 DOI: 10.1016/j.cbpb.2019.110326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Hypoxia-tolerant animals use metabolic suppression as an essential strategy to survive low oxygen. Ectotherms can alter membrane lipid composition in response to changes in environmental temperature, but it is currently unknown whether chronic hypoxia can also elicit membrane restructuring. The goal of this study was to investigate a possible physiological link between membrane remodelling and metabolic suppression in goldfish exposed to prolonged hypoxia (4 weeks at 10% air saturation). We have tested the hypothesis that chronic hypoxia would modulate membrane lipid composition in ways that are consistent with known mechanisms of ion pump inhibition. Because homeoviscous membrane restructuring could interfere with the response to hypoxia, measurements were made at 2 temperatures. Results show that hypoxic goldfish suppress metabolic rate by 74% (at 13 °C) and 63% (at 20 °C). This study is the first to reveal that cold-acclimated animals undergo extensive, tissue-specific restructuring of membrane lipids as they reach minimal metabolic rates. However, hypoxia does not affect membrane composition in fish acclimated to 20 °C. The strong membrane response of cold-acclimated fish involves increases in cholesterol abundance (in white muscle and gills) and in fatty acid saturation, mainly caused by a reduction in %22:6 (docosahexaenoic acid in gills and liver). Major ion pumps like Na+/K+-ATPase are known to be inhibited by cholesterol and activated by 22:6. Because ion pumping by membrane-bound ATPases accounts for a large fraction of basal cellular energy use, we propose that the membrane responses reported here could be a novel mechanism to promote metabolic suppression in cold-acclimated animals.
Collapse
Affiliation(s)
- Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric D Turenne
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
4
|
Kostetsky EY, Velansky PV, Sanina NM. Thermal Adaptation and Fatty Acid Composition of Major Phospholipids in the Plain Sculpin Myoxocephalus jaok at Different Temperatures of Natural Habitat. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Fonovich TM, Perez-Coll CS, Fridman O, D'Eramo JL, Herkovits J. Phospholipid changes in Rhinella arenarum embryos under different acclimation conditions to copper. Comp Biochem Physiol C Toxicol Pharmacol 2016; 189:10-6. [PMID: 27394964 DOI: 10.1016/j.cbpc.2016.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Teresa M Fonovich
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Cristina S Perez-Coll
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Argentina; Instituto de Investigación e Ingeniería Ambiental, (UNSAM), Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina
| | - Osvaldo Fridman
- Universidad Abierta Interamericana, Av. San Juan 951, Buenos Aires, Argentina
| | - José L D'Eramo
- Instituto de Ciencias Ambientales y Salud, Fundación PROSAMA., Paysandú 752, Buenos Aires, Argentina
| | - Jorge Herkovits
- Instituto de Ciencias Ambientales y Salud, Fundación PROSAMA., Paysandú 752, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Hayward SAL, Manso B, Cossins AR. Molecular basis of chill resistance adaptations in poikilothermic animals. ACTA ACUST UNITED AC 2014; 217:6-15. [PMID: 24353199 DOI: 10.1242/jeb.096537] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly in genetic model species from a broader range of taxa.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
7
|
Brogden G, Propsting M, Adamek M, Naim HY, Steinhagen D. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.). Comp Biochem Physiol B Biochem Mol Biol 2013; 169:9-15. [PMID: 24326265 DOI: 10.1016/j.cbpb.2013.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022]
Abstract
Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.
Collapse
Affiliation(s)
- Graham Brogden
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Marcus Propsting
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany; Department of Physiological Chemistry, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany.
| |
Collapse
|
8
|
Gonzalez A, Odjélé A, Weber JM. PCB-153 and temperature cause restructuring of goldfish membranes: homeoviscous response to a chemical fluidiser. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:11-18. [PMID: 24121159 DOI: 10.1016/j.aquatox.2013.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Ortho-substituted PCBs intercalate between membrane phospholipids similarly to cholesterol and increase fluidity. Ectothermic animals have a well-developed homeoviscous response to counter the fluidising effect of temperature and avoid the disruption of membrane proteins. However, it remains unknown whether chemical fluidisation can also activate a homeoviscous response or interfere with normal acclimation to temperature. The fatty acid composition and cholesterol content of membranes from gill, white muscle, liver, and brain was measured in goldfish exposed to 4 treatments in a 2 × 2 factorial design (acclimated to 5 or 20°C, and exposed or not to PCB-153). The expression of Δ6 and Δ9 desaturases was also measured in gill and liver because these enzymes modulate changes in membrane unsaturation. We hypothesised that thermal and chemical stress would cause similar adjustments in phospholipid unsaturation, membrane cholesterol, and desaturase expression. Results show that PCB-153 triggers a homeoviscous response by changing cholesterol content in liver (+51%) and brain (+216%), as well as the double bond index in gills (-17%). In response to higher temperature, the membranes of gill, muscle, and brain substitute polyunsaturated fatty acids such as arachidonate [20:4] and eicosadienoate [20:2] with saturated fatty acids such as palmitate [16:0] and stearate [18:0]. Each tissue has a distinct pattern of changes, suggesting that different local factors contribute to the stress response. It is also possible that the thermal tolerance of individual species influences the homeoviscous response because the changes observed in goldfish liver are not consistent with what has been reported for trout liver. No evidence supporting the activation of desaturase expression could be found. Overall, and contrary to expectation, modulating membrane cholesterol is the main mechanism used to cope with PCB-153, whereas changes in unsaturation dominate temperature acclimation. If also present in other species, these protective responses may prove particularly important for polar fish that face the combined effects of thermal stress from climate change and chemical stress from organochlorine deposition. This study is the first to show that in vivo exposure to a membrane fluidiser can cause a homeoviscous response in an ectothermic animal. We conclude that the homeostatic mechanisms that preserve normal membrane function vary: (1) with the nature of the stress that perturbs fluidity, (2) with local conditions within each tissue, and (3) possibly with the thermal tolerance of individual species. These complicating factors will have to be considered in future studies of homeoviscous adjustments.
Collapse
|
9
|
Dindia L, Murray J, Faught E, Davis TL, Leonenko Z, Vijayan MM. Novel nongenomic signaling by glucocorticoid may involve changes to liver membrane order in rainbow trout. PLoS One 2012; 7:e46859. [PMID: 23056491 PMCID: PMC3466178 DOI: 10.1371/journal.pone.0046859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/06/2012] [Indexed: 11/21/2022] Open
Abstract
Stress-induced glucocorticoid elevation is a highly conserved response among vertebrates. This facilitates stress adaptation and the mode of action involves activation of the intracellular glucocorticoid receptor leading to the modulation of target gene expression. However, this genomic effect is slow acting and, therefore, a role for glucocorticoid in the rapid response to stress is unclear. Here we show that stress levels of cortisol, the primary glucocorticoid in teleosts, rapidly fluidizes rainbow trout (Oncorhynchus mykiss) liver plasma membranes in vitro. This involved incorporation of the steroid into the lipid domains, as cortisol coupled to a membrane impermeable peptide moiety, did not affect membrane order. Studies confirmed that cortisol, but not sex steroids, increases liver plasma membrane fluidity. Atomic force microscopy revealed cortisol-mediated changes to membrane surface topography and viscoelasticity confirming changes to membrane order. Treating trout hepatocytes with stress levels of cortisol led to the modulation of cell signaling pathways, including the phosphorylation status of putative PKA, PKC and AKT substrate proteins within 10 minutes. The phosphorylation by protein kinases in the presence of cortisol was consistent with that seen with benzyl alcohol, a known membrane fluidizer. Our results suggest that biophysical changes to plasma membrane properties, triggered by stressor-induced glucocorticoid elevation, act as a nonspecific stress response and may rapidly modulate acute stress-signaling pathways.
Collapse
Affiliation(s)
- Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Josh Murray
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Erin Faught
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tracy L. Davis
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
10
|
Toyran N, Severcan F, Severcan M, Turan B. Effects of selenium supplementation on rat heart apex and right ventricle myocardia by using FTIR spectroscopy: A cluster analysis and neural network approach. Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
12
|
Zehmer JK, Hazel JR. Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout. ACTA ACUST UNITED AC 2006; 208:4283-90. [PMID: 16272251 DOI: 10.1242/jeb.01899] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In poikilotherms, increases in plasma membrane (PM) cholesterol and an increase in the degree of lipid acyl chain saturation commonly accompany an increase in growth temperature. This has typically been interpreted in terms of membrane fluidity/order homeostasis, but these changes would also be expected to stabilize the structure of PM rafts against thermal perturbation. Rafts are microdomains that organize the molecules of many signaling cascades and are formed as a result of interactions between lipids with saturated acyl chains and cholesterol. No study to date has examined the thermally induced compositional changes of raft and non-raft regions of the PM separately. In this study we have measured the phospholipid class composition and fatty acid composition of raft-enriched (raft) and raft-depleted PM (RDPM) of hepatocytes from trout Oncorhynchus mykiss acclimated to 5 degrees C and 20 degrees C. In the raft, warm acclimation was associated with a reduction in the proportion of phosphatidylcholine from 56% to 30% while phosphatidylserine and phosphatidylinositol each increased from 8% to approximately 20% of the total phospholipid. Additionally, there were significantly fewer unsaturated fatty acids in the raft lipids from warm-acclimated (61%) than from the cold-acclimated trout (68%). In contrast, there were no significant changes in phospholipid class or acyl chain unsaturation in the RDPM. These data suggest that changes in raft lipid composition, rather than the PM as a whole, are particularly important during thermal acclimation.
Collapse
Affiliation(s)
- John K Zehmer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|