1
|
Guo Z, Liao X, Chen JY, He C, Lu Z. Binding Pattern Reconstructions of FGF-FGFR Budding-Inducing Signaling in Reef-Building Corals. Front Physiol 2022; 12:759370. [PMID: 35058792 PMCID: PMC8764167 DOI: 10.3389/fphys.2021.759370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Reef-building corals play an important role in marine ecosystems. However, owing to climate change, ocean acidification, and predation by invasive crown-of-thorns starfish, these corals are declining. As marine animals comprise polyps, reproduction by asexual budding is pivotal in scleractinian coral growth. The fibroblast growth factor (FGF) signaling pathway is essential in coral budding morphogenesis. Here, we sequenced the full-length transcriptomes of four common and frequently dominant reef-building corals and screened out the budding-related FGF and FGFR genes. Thereafter, three-dimensional (3D) models of FGF and FGFR proteins as well as FGF-FGFR binding models were reconstructed. Based on our findings, the FGF8-FGFR3 binding models in Pocillopora damicornis, Montipora capricornis, and Acropora muricata are typical receptor tyrosine kinase-signaling pathways that are similar to the Kringelchen (FGFR) in hydra. However, in P. verrucosa, FGF8 is not the FGFR3 ligand, which is found in other hydrozoan animals, and its FGFR3 must be activated by other tyrosine kinase-type ligands. Overall, this study provides background on the potentially budding propagation signaling pathway activated by the applications of biological agents in reef-building coral culture that could aid in the future restoration of coral reefs.
Collapse
Affiliation(s)
- Zhuojun Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, China
| | - J-Y Chen
- Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Matsuoka D, Kamiya M, Sato T, Sugita Y. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3. J Comput Chem 2019; 41:561-572. [PMID: 31804721 DOI: 10.1002/jcc.26122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a member of receptor tyrosine kinases, which is involved in skeletal cell growth, differentiation, and migration. FGFR3 transduces biochemical signals from the extracellular ligand-binding domain to the intracellular kinase domain through the conformational changes of the transmembrane (TM) helix dimer. Here, we apply generalized replica exchange with solute tempering method to wild type (WT) and G380R mutant (G380R) of FGFR3. The dimer interface in G380R is different from WT and the simulation results are in good agreement with the solid-state nuclear magnetic resonance (NMR) spectroscopy. TM helices in G380R are extended more than WT, and thereby, G375 in G380R contacts near the N-termini of the TM helix dimer. Considering that both G380R and G375C show the constitutive activation, the formation of the N-terminal contacts of the TM helices can be generally important for the activation mechanism. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daisuke Matsuoka
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
| | - Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystem Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
3
|
Abstract
Membrane proteins have central roles in cellular processes ranging from nutrient uptake to cell-cell communication, and are key drug targets. However, research on α-helical integral membrane proteins is in its relative infancy vs. water-soluble proteins, largely because of their water insolubility when extracted from their native membrane environment. Peptides with sequences that correspond to the membrane-spanning segments of α-helical integral membrane proteins, termed transmembrane (TM) peptides, provide valuable tools for the characterization of these molecules. Here we describe in detail protocols for the design of TM peptides from the sequences of natural α-helical integral membrane proteins and outline strategies for their synthesis and for improving their solubility properties.
Collapse
Affiliation(s)
- Arianna Rath
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Stahl PJ, Cruz JC, Li Y, Michael Yu S, Hristova K. On-the-resin N-terminal modification of long synthetic peptides. Anal Biochem 2012; 424:137-9. [PMID: 22387389 DOI: 10.1016/j.ab.2012.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/16/2022]
Abstract
Here we present a highly efficient protocol for on-the-resin coupling of fluorescent dyes or other functional groups to the N-termini of synthetic peptides prior to cleavage and deprotection. The protocol avoids expensive preactivated dyes and instead employs carboxylated dyes activated by large amounts of coupling reagents. The protocol was used to label peptides with low reactivity such as long hydrophobic peptides and peptides with strong tendencies to form sterically shielding structures or aggregates in solution. In all cases, the yields far exceeded those from commercially available preactivated compounds.
Collapse
Affiliation(s)
- Patrick J Stahl
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
5
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
6
|
He L, Hristova K. Physical-chemical principles underlying RTK activation, and their implications for human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:995-1005. [PMID: 21840295 DOI: 10.1016/j.bbamem.2011.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
RTKs, the second largest family of membrane receptors, exert control over cell proliferation, differentiation and migration. In recent years, our understanding of RTK structure and activation in health and disease has skyrocketed. Here we describe experimental approaches used to interrogate RTKs, and we review the quantitative biophysical frameworks and structural considerations that shape our understanding of RTK function. We discuss current knowledge about RTK interactions, focusing on the role of different domains in RTK homodimerization, and on the importance and challenges in RTK heterodimerization studies. We also review our understanding of pathogenic RTK mutations, and the underlying physical-chemical causes for the pathologies. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
7
|
Schick S, Chen L, Li E, Lin J, Köper I, Hristova K. Assembly of the m2 tetramer is strongly modulated by lipid chain length. Biophys J 2011; 99:1810-7. [PMID: 20858425 DOI: 10.1016/j.bpj.2010.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/17/2022] Open
Abstract
The influenza virus matrix protein 2 (M2) assembles into a tetramer in the host membrane during viral uncoating and maturation. It has been used as a model system to understand the relative contributions of protein-lipid and protein-protein interactions to membrane protein structure and association. Here we investigate the effect of lipid chain length on the association of the M2 transmembrane domain into tetramers using Förster resonance energy transfer. We observe that the interactions between the M2 helices are much stronger in 1,2-dilauroyl-sn-glycero-3-phosphocholine than in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Thus, lipid chain length and bilayer thickness not only modulate peptide interactions, but could also be a major determinant of the association of transmembrane helices into functional membrane protein oligomers.
Collapse
Affiliation(s)
- Sandra Schick
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hubert P, Sawma P, Duneau JP, Khao J, Hénin J, Bagnard D, Sturgis J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh Migr 2010; 4:313-24. [PMID: 20543559 PMCID: PMC2900628 DOI: 10.4161/cam.4.2.12430] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023] Open
Abstract
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.
Collapse
Affiliation(s)
- Pierre Hubert
- LISM UPR 9027, CNRS-Aix-Marseille University, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
10
|
Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal 2009; 2:ra56. [PMID: 19797273 DOI: 10.1126/scisignal.2000547] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases typically involves a dynamic receptor monomer-dimer equilibrium in which ligand binding to soluble extracellular domains triggers receptor dimerization and subsequent signaling events. Although the role in signal transduction of the single transmembrane helices of individual receptors, which connect the extracellular with the intracellular protein domains, is not understood in detail, we show here that the single transmembrane domains of all 58 human receptor tyrosine kinases alone have an intrinsic propensity to form stable dimeric structures within a membrane. Thus, defined interactions of the transmembrane domains are most likely generally involved in signaling by all human receptor tyrosine kinases.
Collapse
Affiliation(s)
- Carmen Finger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
11
|
Chen L, Merzlyakov M, Cohen T, Shai Y, Hristova K. Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys J 2009; 96:4622-30. [PMID: 19486684 DOI: 10.1016/j.bpj.2009.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 01/12/2023] Open
Abstract
One of the most extensively studied receptor tyrosine kinases is EGFR/ErbB1. Although our knowledge of the role of the extracellular domains and ligands in ErbB1 activation has increased dramatically based on solved domain structures, the exact mechanism of signal transduction across the membrane remains unknown. The transmembrane domains are expected to play an important role in the dimerization process, but the contribution of ErbB1 TM domain to dimer stability is not known, with published results contradicting one another. We address this controversy by showing that ErbB1 TM domain dimerizes in lipid bilayers and by calculating its contribution to stability as -2.5 kcal/mol. The stability calculations use two different methods based on Förster resonance energy transfer, which give the same result. The ErbB1 TM domain contribution to stability exceeds the change in receptor tyrosine kinases dimerization propensities that can convert normal signaling processes into pathogenic processes, and is thus likely important for biological function.
Collapse
Affiliation(s)
- Lirong Chen
- Department of Materials Science and Engineering Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
12
|
Peng WC, Lin X, Torres J. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 2009; 18:450-9. [PMID: 19165726 DOI: 10.1002/pro.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR subfamily of the receptor tyrosine kinases (RTKs) involved in signaling across the plasma membrane. Generally, ligand binding leads to receptor dimerization and activation. Dimerization involves the transmembrane (TM) domain, where mutations can lead to constitutive activation in certain cancer types and also in skeletal malformations. Thus, it has been postulated that FGFR homodimerization must be inherently weak to allow regulation, a feature reminiscent of alpha and beta integrin TM interactions. However, we show herein that in FGFR3-TM, four C-terminal residues, CRLR, have a profound destabilizing effect in an otherwise strongly dimerizing TM peptide. In the absence of these four residues, the dimerizing propensity of FGFR3-TM is comparable to glycophorin, as shown using various detergents. In addition, the expected enhanced dimerization induced by the mutation associated to the Crouzon syndrome A391E, was observed only when these four C-terminal residues were present. In the absence of these four residues, A391E was dimer-destabilizing. Finally, using site specific infrared dichroism and convergence with evolutionary conservation data, we have determined the backbone model of the FGFR3-TM homodimer in model lipid bilayers. This model is consistent with, and correlates with the effects of, most known pathological mutations found in FGFR-TM.
Collapse
|
13
|
Rath A, Tulumello DV, Deber CM. Peptide Models of Membrane Protein Folding. Biochemistry 2009; 48:3036-45. [DOI: 10.1021/bi900184j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arianna Rath
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - David V. Tulumello
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Charles M. Deber
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
14
|
Walkenhorst WF, Merzlyakov M, Hristova K, Wimley WC. Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1321-31. [PMID: 19265670 DOI: 10.1016/j.bbamem.2009.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
There are only a few available methods to study lateral interactions and self assembly of transmembrane helices. One of the most frequently used methods is sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) which can report on strong interactions between peptides in SDS solution. Here we offer a cautionary tale about studying the folding and assembly of membrane proteins using peptides and SDS-PAGE experiments as a membrane mimetic system. At least for the specific peptide and detergent systems studied here, we show that a polar asparagine residue in the 12th position of an otherwise hydrophobic helical segment of 20 amino acids causes a peptide to migrate on SDS-PAGE gels with an apparent molecular weight that is twice its true molecular weight, suggesting dimerization. However when examined carefully in SDS solutions and in situ in the polyacrylamide gel itself using Forster resonance energy transfer no interaction can be detected. Instead we show evidence suggesting that differential interactions between peptide and detergent drive the differences in electrophoretic mobility without any interaction between peptides. These results emphasize the need to apply multiple independent techniques to the study of membrane protein folding, and they highlight the usefulness of studying folding and structure of membrane proteins in lipid membranes rather than in detergents.
Collapse
|
15
|
Han X, Hristova K. Viewing the bilayer hydrocarbon core using neutron diffraction. J Membr Biol 2009; 227:123-31. [PMID: 19169614 PMCID: PMC2667903 DOI: 10.1007/s00232-008-9151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Membrane proteins fold, assemble and function within their native fluid lipid environment. Structural studies of fluid lipid bilayers are thus critically important for understanding processes in membranes. Here, we propose a simple approach to visualize the hydrocarbon core using neutron diffraction and deuterated lipids that are commercially available. This method should have broad utility in structural studies of the bilayer response to protein insertion and folding in membranes.
Collapse
Affiliation(s)
- Xue Han
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
16
|
Oates J, Hicks M, Dafforn TR, DiMaio D, Dixon AM. In vitro dimerization of the bovine papillomavirus E5 protein transmembrane domain. Biochemistry 2008; 47:8985-92. [PMID: 18672907 DOI: 10.1021/bi8006252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The E5 protein from bovine papillomavirus is a type II membrane protein and the product of the smallest known oncogene. E5 causes cell transformation by binding and activating the platelet-derived growth factor beta receptor (PDGFbetaR). In order to productively interact with the receptor, it is thought that E5 binds as a dimer. However, wild-type E5 and various mutants have also been shown to form trimers, tetramers, and even higher order oligomers. The residues in E5 that drive and stabilize a dimeric state are also still in question. At present, two different models for the E5 dimer exist in the literature, one symmetric and one asymmetric. There is universal agreement, however, that the transmembrane (TM) domain plays a vital role in stabilizing the functional oligomer; indeed, mutation of various TM domain residues can abolish E5 function. In order to better resolve the role of the E5 TM domain in function, we have undertaken the first quantitative in vitro characterization of the E5 TM domain in detergent micelles and liposomes. Circular and linear dichroism analyses verify that the TM domain adopts a stable alpha-helical structure and is able to partition efficiently across lipid bilayers. SDS-PAGE and analytical ultracentrifugation demonstrate for the first time that the TM domain of E5 forms a strong dimer with a standard state free energy of dissociation of 5.0 kcal mol (-1). We have used our new results to interpret existing models of E5 dimer formation and provide a direct link between TM helix interactions and E5 function.
Collapse
Affiliation(s)
- Joanne Oates
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Merzlyakov M, Hristova K. Forster resonance energy transfer measurements of transmembrane helix dimerization energetics. Methods Enzymol 2008; 450:107-27. [PMID: 19152858 DOI: 10.1016/s0076-6879(08)03406-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lateral interactions between hydrophobic transmembrane (TM) helices in membranes underlie the folding of multispan membrane proteins and signal transduction by receptor tyrosine kinases (RTKs). Quantitative measurements of dimerization energetics in membranes are required to uncover the physical principles behind these processes. Here, we overview how FRET measurements can be used to determine the thermodynamics of TM helix homo- and heterodimerization in vesicles and in supported bilayers. Such measurements can shed light on the molecular mechanism behind pathologies arising due to single-amino acid mutations in membrane proteins.
Collapse
Affiliation(s)
- Mikhail Merzlyakov
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
18
|
Han X, Hristova K, Wimley WC. Protein folding in membranes: insights from neutron diffraction studies of a membrane beta-sheet oligomer. Biophys J 2007; 94:492-505. [PMID: 17872952 PMCID: PMC2157250 DOI: 10.1529/biophysj.107.113183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of the assembly of the hexapeptide Acetyl-Trp-Leu(5) (AcWL(5)) into beta-sheets in membranes have provided insights into membrane protein folding. Yet, the exact structure of the oligomer in the lipid bilayer is unknown. Here we use neutron diffraction to study the disposition of the peptides in bilayers. We find that pairs of adjacent deuterium-labeled leucines have no well-defined peak or dip in the transmembrane distribution profiles, indicative of heterogeneity in the depth of membrane insertion. At the same time, the monomeric homolog AcWL(4) exhibits a homogeneous, well-defined, interfacial location in neutron diffraction experiments. Thus, although the bilayer location of monomeric AcWL(4) is determined by hydrophobicity matching or complementarity within the bilayer, the AcWL(5) molecules in the oligomer are positioned at different depths within the bilayer because they assemble into a staggered transmembrane beta-sheet. The AcWL(5) assembly is dominated by protein-protein interactions rather than hydrophobic complementarity. These results have implications for the structure and folding of proteins in their native membrane environment and highlight the importance of the interplay between hydrophobic complementarity and protein-protein interactions in determining the structure of membrane proteins.
Collapse
Affiliation(s)
- Xue Han
- The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
19
|
Merzlyakov M, Chen L, Hristova K. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method. J Membr Biol 2007; 215:93-103. [PMID: 17565424 PMCID: PMC2770890 DOI: 10.1007/s00232-007-9009-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
The energetics of transmembrane (TM) helix dimerization in membranes and the thermodynamic principles behind receptor tyrosine kinase (RTK) TM domain interactions during signal transduction can be studied using Förster resonance energy transfer (FRET). For instance, FRET studies have yielded the stabilities of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domains and two FGFR3 pathogenic mutants, Ala391Glu and Gly380Arg, in the native bilayer environment. To further our understanding of the molecular mechanisms of deregulated FGFR3 signaling underlying different pathologies, we determined the effect of the Gly382Asp FGFR3 mutation, identified in a multiple myeloma cell line, on the energetics of FGFR3 TM domain dimerization. We measured dimerization energetics using a novel FRET acquisition and processing method, termed "emission-excitation FRET (EmEx-FRET)," which improves the precision of thermodynamic measurements of TM helix association. The EmEx-FRET method, verified here by analyzing previously published data for wild-type FGFR3 TM domain, should have broad utility in studies of protein interactions, particularly in cases when the concentrations of fluorophore-tagged molecules cannot be controlled.
Collapse
Affiliation(s)
- Mikhail Merzlyakov
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
20
|
Cano-Sanchez P, Severino B, Sureshbabu VV, Russo J, Inui T, Ding FX, Arshava B, Becker J, Naider F. Effects of N- and C-terminal addition of oligolysines or native loop residues on the biophysical properties of transmembrane domain peptides from a G-protein coupled receptor. J Pept Sci 2007; 12:808-22. [PMID: 17131294 DOI: 10.1002/psc.816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transmembrane domains (TMDs) of G-protein coupled receptors (GPCRs) have very low water solubility and often aggregate during purification and biophysical investigations. To circumvent this problem many laboratories add oligolysines to the N- and C-termini of peptides that correspond to a TMD. To systematically evaluate the effect of the oligolysines on the biophysical properties of a TMD we synthesized 21 peptides corresponding to either the second (TPIFIINQVSLFLIILHSALYFKY) or sixth (SFHILLIMSSQSLLVPSIIFILAYSLK) TMD of Ste2p, a GPCR from Saccharomyces cerevisiae. Added to the termini of these peptides were either Lys(n) (n = 1,2,3) or the corresponding native loop residues. The biophysical properties of the peptides were investigated by circular dichroism (CD) spectroscopy in trifluoroethanol-water mixtures, sodium dodecyl sulfate (SDS) micelles and dimyristoylphosphocholine (DMPC)-dimyristoylphosphoglycerol (DMPG) vesicles, and by attenuated total reflection Fourier transform infrared (ATR-FTIR) in DMPC/DMPG multilayers. The results show that the conformation assumed depends on the number of lysine residues and the sequence of the TMD. Identical peptides with native or an equal number of lysine residues exhibited different biophysical properties and structural tendencies.
Collapse
Affiliation(s)
- Patricia Cano-Sanchez
- Department of Chemistry, College of Staten Island and Macromolecular Assemblies Institute of the City University of New York, Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Han X, Mihailescu M, Hristova K. Neutron diffraction studies of fluid bilayers with transmembrane proteins: structural consequences of the achondroplasia mutation. Biophys J 2006; 91:3736-47. [PMID: 16950849 PMCID: PMC1630470 DOI: 10.1529/biophysj.106.092247] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia.
Collapse
Affiliation(s)
- Xue Han
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
22
|
Merzlyakov M, Li E, Casas R, Hristova K. Spectral Förster resonance energy transfer detection of protein interactions in surface-supported bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6986-92. [PMID: 16863249 DOI: 10.1021/la061038d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Förster resonance energy transfer (FRET), a fluorescence detection technique, is often used for sensing molecular interactions in solution and in membranes. Here we show that (1) FRET spectra can be recorded in single bilayers, supported on a surface, and (2) the fluorescein/rhodamine dye pair is an adequate reporter of FRET when spectral detection is used. Thus, measurements pertaining to molecular interactions in membranes can be carried out in supported bilayers. Spectral FRET has advantages over imaging FRET, which monitors only signal amplitudes at certain wavelength. There are also advantages to performing spectral FRET measurements in supported bilayers as compared to free liposomes in suspension. However, the spectral properties of dyes can be altered in an unexpected manner in an ordered bilayer structure on a surface, such that fluorescence detection in surface-supported bilayers is not always trivial.
Collapse
Affiliation(s)
- Mikhail Merzlyakov
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
23
|
Merzlyakov M, You M, Li E, Hristova K. Transmembrane helix heterodimerization in lipid bilayers: probing the energetics behind autosomal dominant growth disorders. J Mol Biol 2006; 358:1-7. [PMID: 16500676 PMCID: PMC3812923 DOI: 10.1016/j.jmb.2006.01.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 10/25/2022]
Abstract
Here, we show that the energetics of transmembrane helix heterodimer formation can be characterized in liposomes using Förster resonance energy transfer (FRET). We present the theory and the protocol for measuring the free energy of heterodimerization, and the total (hetero and homo-dimeric) dimer fraction. We use the presented methodology to determine the propensity for heterodimer formation between wild-type fibroblast growth factor receptor 3 (FGFR3) transmembrane domain and the Ala391Glu mutant, linked to Crouzon syndrome with acanthosis nigricans.
Collapse
|
24
|
Li E, You M, Hristova K. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation. J Mol Biol 2005; 356:600-12. [PMID: 16384584 PMCID: PMC3812913 DOI: 10.1016/j.jmb.2005.11.077] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/07/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the transmembrane (TM) domains of receptor tyrosine kinases (RTKs) have been implicated in the induction of pathological phenotypes. These mutations are believed to stabilize the RTK dimers, and thus promote unregulated signaling. However, the energetics behind the pathology induction has not been determined. An example of a TM domain pathogenic mutation is the Ala391-->Glu mutation in fibroblast growth factor receptor 3 (FGFR3), linked to Crouzon syndrome with acanthosis nigricans, as well as to bladder cancer. Here, we determine the free energy of dimerization of wild-type and mutant FGFR3 TM domain in lipid bilayers using Förster resonance energy transfer, and we show that hydrogen bonding between Glu391 and the adjacent helix in the dimer is a feasible mechanism for dimer stabilization. The measured change in the free energy of dimerization due to the Ala391-->Glu pathogenic mutation is -1.3 kcal/mol, consistent with previous reports of hydrogen bond strengths in proteins. This is the first quantitative measurement of mutant RTK stabilization in a membrane environment. We show that this seemingly modest value can lead to a large increase in dimer fraction and thus profoundly affect RTK-mediated signal transduction.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Cell Membrane/genetics
- Craniofacial Dysostosis/genetics
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Fluorescence Resonance Energy Transfer
- Glutamic Acid/genetics
- Humans
- Liposomes
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Structure, Secondary/genetics
- Protein Structure, Tertiary/genetics
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Signal Transduction/genetics
- Thermodynamics
- Urinary Bladder Neoplasms/genetics
Collapse
|