1
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
2
|
Madigan V, Zhang Y, Raghavan R, Wilkinson ME, Faure G, Puccio E, Segel M, Lash B, Macrae RK, Zhang F. Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc Natl Acad Sci U S A 2024; 121:e2307812120. [PMID: 38437549 PMCID: PMC10945824 DOI: 10.1073/pnas.2307812120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/20/2023] [Indexed: 03/06/2024] Open
Abstract
A number of endogenous genes in the human genome encode retroviral gag-like proteins, which were domesticated from ancient retroelements. The paraneoplastic Ma antigen (PNMA) family members encode a gag-like capsid domain, but their ability to assemble as capsids and traffic between cells remains mostly uncharacterized. Here, we systematically investigate human PNMA proteins and find that a number of PNMAs are secreted by human cells. We determine that PNMA2 forms icosahedral capsids efficiently but does not naturally encapsidate nucleic acids. We resolve the cryoelectron microscopy (cryo-EM) structure of PNMA2 and leverage the structure to design engineered PNMA2 (ePNMA2) particles with RNA packaging abilities. Recombinantly purified ePNMA2 proteins package mRNA molecules into icosahedral capsids and can function as delivery vehicles in mammalian cell lines, demonstrating the potential for engineered endogenous capsids as a nucleic acid therapy delivery modality.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Yugang Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rumya Raghavan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Max E. Wilkinson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Guilhem Faure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Elena Puccio
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Michael Segel
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Blake Lash
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Rhiannon K. Macrae
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| |
Collapse
|
3
|
Moço PD, Dash S, Kamen AA. Enhancement of adeno-associated virus serotype 6 transduction into T cells with cell-penetrating peptides. J Gene Med 2024; 26:e3627. [PMID: 37957034 DOI: 10.1002/jgm.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Shantoshini Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Öktem M, Mastrobattista E, de Jong OG. Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction. Pharmaceutics 2023; 15:2500. [PMID: 37896260 PMCID: PMC10609989 DOI: 10.3390/pharmaceutics15102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The therapeutic potential of the CRISPR-Cas9 gene editing system in treating numerous genetic disorders is immense. To fully realize this potential, it is crucial to achieve safe and efficient delivery of CRISPR-Cas9 components into the nuclei of target cells. In this study, we investigated the applicability of the amphipathic cell-penetrating peptide LAH5, previously employed for DNA delivery, in the intracellular delivery of spCas9:sgRNA ribonucleoprotein (RNP) and the RNP/single-stranded homology-directed repair (HDR) template. Our findings reveal that the LAH5 peptide effectively formed nanocomplexes with both RNP and RNP/HDR cargo, and these nanocomplexes demonstrated successful cellular uptake and cargo delivery. The loading of all RNP/HDR components into LAH5 nanocomplexes was confirmed using an electrophoretic mobility shift assay. Functional screening of various ratios of peptide/RNP nanocomplexes was performed on fluorescent reporter cell lines to assess gene editing and HDR-mediated gene correction. Moreover, targeted gene editing of the CCR5 gene was successfully demonstrated across diverse cell lines. This LAH5-based delivery strategy represents a significant advancement toward the development of therapeutic delivery systems for CRISPR-Cas-based genetic engineering in in vitro and ex vivo applications.
Collapse
Affiliation(s)
| | | | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.Ö.); (E.M.)
| |
Collapse
|
5
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
6
|
Basuthakur P, Roy A, Patra CR, Chakravarty S. Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion injury in cardiomyocytes. BIOMATERIALS ADVANCES 2023; 153:213531. [PMID: 37429046 DOI: 10.1016/j.bioadv.2023.213531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Myocardial hypoxia reperfusion (H/R) injury is the paradoxical exacerbation of myocardial damage, caused by the sudden restoration of blood flow to hypoxia affected myocardium. It is a critical contributor of acute myocardial infarction, which can lead to cardiac failure. Despite the current pharmacological advancements, clinical translation of cardioprotective therapies have proven challenging. As a result, researchers are looking for alternative approaches to counter the disease. In this regard, nanotechnology, with its versatile applications in biology and medicine, can confer broad prospects for treatment of myocardial H/R injury. Herein, we attempted to explore whether a well-established pro-angiogenic nanoparticle, terbium hydroxide nanorods (THNR) can ameliorate myocardial H/R injury. For this study, in vitro H/R-injury model was established in rat cardiomyocytes (H9c2 cells). Our investigations demonstrated that THNR enhance cardiomyocyte survival against H/R-induced cell death. This pro-survival effect of THNR is associated with reduction of oxidative stress, lipid peroxidation, calcium overload, restoration of cytoskeletal integrity and mitochondrial membrane potential as well as augmentation of cellular anti-oxidant enzymes such as glutathione-s-transferase (GST) and superoxide dismutase (SOD) to counter H/R injury. Molecular analysis revealed that the above observations are traceable to the predominant activation of PI3K-AKT-mTOR and ERK-MEK signalling pathways by THNR. Concurrently, THNR also exhibit apoptosis inhibitory effects mainly by suppression of pro-apoptotic proteins like Cytochrome C, Caspase 3, Bax and p53 with simultaneous restoration of anti-apoptotic protein, Bcl-2 and Survivin. Thus, considering the above attributes, we firmly believe that THNR have the potential to be developed as an alternative approach for amelioration of H/R injury in cardiomyocytes.
Collapse
Affiliation(s)
- Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
8
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Abuhelal S, Centelles MN, Wright M, Mason AJ, Thanou M. Development of Cationic Lipid LAH4-L1 siRNA Complexes for Focused Ultrasound Enhanced Tumor Uptake. Mol Pharm 2023; 20:2341-2351. [PMID: 36989421 PMCID: PMC10155207 DOI: 10.1021/acs.molpharmaceut.2c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
RNAi has considerable potential as a cancer therapeutic approach, but effective and efficient delivery of short interfering RNA (siRNA) to tumors remains a major hurdle. It remains a challenge to prepare a functional siRNA complex, target enough dose to the tumor, and stimulate its internalization into tumor cells and its release to the cytoplasm. Here, we show how these key barriers to siRNA delivery can be overcome with a complex─comprising siRNA, cationic lipids, and pH-responsive peptides─that is suited to tumor uptake enhancement via focused ultrasound (FUS). The complex provides effective nucleic acid encapsulation, nuclease protection, and endosomal escape such that gene silencing in cells is substantially more effective than that obtained with either equivalent lipoplexes or commercial reagents. In mice bearing MDA-MB-231 breast cancer xenografts, both lipid and ternary, lipid:peptide:siRNA complexes, prepared with near-infrared fluorescently labeled siRNA, accumulate in tumors following FUS treatments. Therefore, combining a well-designed lipid:peptide:siRNA complex with FUS tumor treatments is a promising route to achieve robust in vivo gene delivery.
Collapse
Affiliation(s)
- Shahd Abuhelal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Miguel N Centelles
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Michael Wright
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
10
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
11
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
12
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
13
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Ahmad A, Khan JM. pH-sensitive endosomolytic peptides in gene and drug delivery: Endosomal escape and current challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Neugebauer M, Grundmann CE, Lehnert M, von Stetten F, Früh SM, Süss R. Analyzing siRNA Concentration, Complexation and Stability in Cationic Dendriplexes by Stem-Loop Reverse Transcription-qPCR. Pharmaceutics 2022; 14:pharmaceutics14071348. [PMID: 35890243 PMCID: PMC9320460 DOI: 10.3390/pharmaceutics14071348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence:
| | - Clara E. Grundmann
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| |
Collapse
|
16
|
Mejia F, Khan S, Omstead DT, Minetos C, Bilgicer B. Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles. NANOSCALE 2022; 14:1226-1240. [PMID: 34993530 DOI: 10.1039/d1nr05357d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Endosomal escape of nanoparticles (NPs) is a weighty consideration for engineering successful nanomedicines. Although it is well-established that incorporation of histidine (His) in particle design improves endosomal escape for NPs, our understanding of its effects for ligand-targeted nanoparticles (TNPs) remains incomplete. Here, we systematically evaluated the cooperativity between targeting ligands and endosomolytic elements using liposomal TNPs with precise stoichiometric control over functional moieties (>90% loading efficiency). We synthesized endosomolytic lipid conjugates consisting of 1 to 10 consecutive His residues presented at the end of linkers between 2 to 45 repeating units of ethylene glycol (Hisn-EGm). Hisn-EGm had minimal effect on NP size (∼115 nm) and had no significant effect on the receptor specificity of TNPs (>90% inhibition by competing peptide). We evaluated various formulations with 8 different targeting ligands relevant to two disease models. Incorporation of His1-EG8 resulted in up to ∼170- and ∼12.9-fold enhancement in intracellular accumulation relative to non-endosomolytic NP and TNP, respectively. These observations were time-dependent, targeted receptor-dependent, and showed different trends for NPs and TNPs. Further evaluation demonstrated short linkers (EG2-4) significantly enhanced nanoparticle internalization compared to EG8 or longer by up to ∼2.5-fold. Finally, rationally optimized formulation, His1-EG2-TNP, improved in vitro toxicity of a DM1 prodrug to SK-BR-3 cells by ∼4.2-fold, with IC50 ∼8.5 nM compared to ∼36 nM for no-His TNP, and >100 nM for non-targeted/no-His NP. This study uncovers an intricate relationship between endosomal escape and ligand-targeted drug delivery, as well as tunable parameters. Furthermore, our findings highlight the value of rational design and systematic analysis for optimization of multifunctional NPs.
Collapse
Affiliation(s)
- Franklin Mejia
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Sabrina Khan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Christina Minetos
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Ali S, Dussouillez C, Padilla B, Frisch B, Mason AJ, Kichler A. Design of a new cell penetrating peptide for DNA, siRNA and mRNA delivery. J Gene Med 2021; 24:e3401. [PMID: 34856643 DOI: 10.1002/jgm.3401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Delivery systems, including peptide-based ones, that destabilize endosomes in a pH-dependent manner are increasingly used to deliver cargoes of therapeutic interest, such as nucleic acids and proteins into mammalian cells. METHODS The negatively charged amphipathic alpha-helicoidal forming peptide named HELP (Helical Erythrocyte Lysing Peptide) is a derivative from the bee venom melittin and was shown to have a pH-dependent activity with the highest lytic activity at pH 5.0 at the same time as becoming inactive when the pH is increased. The present study aimed to determine whether replacement in the HELP peptide of the glutamic acid residues by histidines, for which the protonation state is sensitive to the pH changes that occur during endosomal acidification, can transform this fusogenic peptide into a carrier able to deliver different nucleic acids into mammalian cells. RESULTS The resulting HELP-4H peptide displays high plasmid DNA, small interfering RNA and mRNA delivery capabilities. Importantly, in contrast to other cationic peptides, its transfection activity was only marginally affected by the presence of serum. Using circular dichroism, we found that acidic pH did not induce significant conformational changes for HELP-4H. CONCLUSIONS In summary, we were able to develop a new cationic histidine rich peptide able to efficiently deliver various nucleic acids into cells.
Collapse
Affiliation(s)
- Salif Ali
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Candice Dussouillez
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Beatriz Padilla
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Benoît Frisch
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Antoine Kichler
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
18
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
19
|
Internalization and membrane activity of the antimicrobial peptide CGA-N12. Biochem J 2021; 478:1907-1919. [PMID: 33955460 DOI: 10.1042/bcj20201006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are conventional antibiotic alternatives due to their broad-spectrum antimicrobial activities and special mechanisms of action against pathogens. The antifungal peptide CGA-N12 was originally derived from human chromogranin A (CGA) and consists of the 65th to 76th amino acids of the CGA N-terminal region. In the present study, we found that CGA-N12 had fungicidal activity and exhibited time-dependent inhibition activity against Candida tropicalis. CGA-N12 entered the cells to exert its antagonist activity. The internalization of CGA-N12 was energy-dependent and accompanied by actin cytoskeleton-, clathrin-, sulfate proteoglycan-, endosome-, and lipid-depleting agent-mediated endocytosis. Moreover, the CGA-N12 internalization pathway was related to the peptide concentration. The effects of CGA-N12 on the cell membrane were investigated. CGA-N12 at a low concentration less than 4 × MIC100 did not destroy the cell membrane. While with increasing concentration, the damage to the cell membrane caused by CGA-N12 became more serious. At concentrations greater than 4 × MIC100, CGA-N12 destroyed the cell membrane integrity. Therefore, the membrane activity of CGA-N12 is concentration dependant.
Collapse
|
20
|
Egorova A, Shtykalova S, Selutin A, Shved N, Maretina M, Selkov S, Baranov V, Kiselev A. Development of iRGD-Modified Peptide Carriers for Suicide Gene Therapy of Uterine Leiomyoma. Pharmaceutics 2021; 13:202. [PMID: 33540912 PMCID: PMC7913275 DOI: 10.3390/pharmaceutics13020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine leiomyoma (UL) is one of the most common benign tumors in women that often leads to many reproductive complications. Suicide genetherapy was suggested as a promising approach for UL treatment. In the present study, we describe iRGD ligand-conjugated cysteine-rich peptide carrier RGD1-R6 for targeted DNA delivery to αvβ3 integrin-expressing primary UL cells. The physico-chemical properties, cytotoxicity, transfection efficiency and specificity of DNA/RGD1-R6 polyplexes were investigated. TheHSV-1thymidine kinase encoding plasmid delivery to PANC-1pancreatic carcinoma cells and primary UL cells resulted in significant suicide gene therapy effects. Subsequent ganciclovir treatment decreased cells proliferative activity, induced of apoptosis and promoted cells death.The obtained results allow us to concludethatthe developed RGD1-R6 carrier can be considered a promising candidate for suicide gene therapy of uterine leiomyoma.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Sergei Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| |
Collapse
|
21
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
22
|
Lointier M, Aisenbrey C, Marquette A, Tan JH, Kichler A, Bechinger B. Membrane pore-formation correlates with the hydrophilic angle of histidine-rich amphipathic peptides with multiple biological activities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183212. [DOI: 10.1016/j.bbamem.2020.183212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/06/2023]
|
23
|
Aisenbrey C, Douat C, Kichler A, Guichard G, Bechinger B. Characterization of the DNA and Membrane Interactions of a Bioreducible Cell-Penetrating Foldamer in its Monomeric and Dimeric Form. J Phys Chem B 2020; 124:4476-4486. [DOI: 10.1021/acs.jpcb.0c01853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Céline Douat
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Antoine Kichler
- Faculté de Pharmacie, Université de Strasbourg/CNRS, UMR7199, 74, route du Rhin, 67401 Illkirch, France
| | - Gilles Guichard
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Burkhard Bechinger
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
- Institut Universitaire de France,
| |
Collapse
|
24
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
25
|
The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles. MATERIALS 2019; 12:ma12172671. [PMID: 31443361 PMCID: PMC6747576 DOI: 10.3390/ma12172671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.
Collapse
|
26
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
27
|
Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj 2018; 1862:307-323. [PMID: 28599848 PMCID: PMC6384124 DOI: 10.1016/j.bbagen.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
28
|
Sun Y, Yang Z, Wang C, Yang T, Cai C, Zhao X, Yang L, Ding P. Exploring the role of peptides in polymer-based gene delivery. Acta Biomater 2017; 60:23-37. [PMID: 28778533 DOI: 10.1016/j.actbio.2017.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. STATEMENT OF SIGNIFICANCE Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency.
Collapse
Affiliation(s)
- Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunxi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
29
|
Liu N, Bechinger B, Süss R. The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum. Sci Rep 2017; 7:9585. [PMID: 28852016 PMCID: PMC5575053 DOI: 10.1038/s41598-017-10049-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022] Open
Abstract
Non-viral vectors are widely used and investigated for the delivery of genetic material into cells. However, gene delivery barriers like lysosomal degradation, serum inhibition and transient gene expression so far still limit their clinical applications. Aiming to overcome these limitations, a pH-sensitive hybrid gene vector (PSL complex) was designed by self-assembly of poly(amidoamine) (PAMAM) dendrimers, the histidine-rich peptide LAH4-L1 and the sleeping beauty transposon system (SB transposon system, a plasmid system capable of efficient and precise genomic insertion). Transfection studies revealed that PSL complexes achieved excellent efficiency in all investigated cell lines (higher than 90% in HeLa cells and over 30% in MDCK cells, a difficult-to-transfect cell line). Additionally, the PSL complexes showed high serum tolerance and exhibited outstanding transfection efficiency even in medium containing 50% serum (higher than 90% in HeLa cells). Moreover, a high level of long-term gene expression (over 30% in HeLa cells) was observed. Furthermore, PSL complexes not only resulted in high endocytosis, but also showed enhanced ability of endosomal escape compared to PAMAM/DNA complexes. These results demonstrate that simple association of PAMAM dendrimers, LAH4-L1 peptides and the SB transposon system by self-assembly is a general and promising strategy for efficient and safe gene delivery.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Albert Ludwig University Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany.
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, Membrane Biophysics and NMR, Chemistry Institute UMR7177, rue Blaise Pascal 1, 67008, Strasbourg, France
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Albert Ludwig University Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
30
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
31
|
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017; 90:1079-1093. [DOI: 10.1111/cbdd.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Urszula Piotrowska
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Marcin Sobczak
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Ewa Oledzka
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
32
|
Ping Y, Ding D, Ramos RANS, Mohanram H, Deepankumar K, Gao J, Tang G, Miserez A. Supramolecular β-Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS NANO 2017; 11:4528-4541. [PMID: 28423276 DOI: 10.1021/acsnano.6b08393] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Suckerin proteins, recently discovered in the sucker ring teeth of squids, represent a family of promising structural biomacromolecules that can form supramolecular networks stabilized by nanoconfined β-sheets. Exploiting this feature as well as their specific amino acid composition, we demonstrate that artificial suckerin-19 (S-19) can be engineered into nanocarriers for efficient drug delivery and gene transfection in vitro and in vivo. First, we demonstrate that S-19 self-assembles into β-sheet stabilized nanoparticles with controlled particle sizes of 100-200 nm that are able to encapsulate hydrophobic drugs for pH-dependent release in vitro, and that can effectively inhibit tumor growth in vivo. We also show that S-19 can complex and stabilize plasmid DNA, with the complexes stabilized by hydrophobic interactions of the β-sheet domains as opposed to electrostatic interactions commonly achieved with cationic polymers, thus lowering cytotoxicity. The elevated Histidine content of S-19 appears critical to trigger endosomal escape by the proton sponge effect, thereby ensuring efficient gene transfection both in vitro and in vivo. Our study demonstrates that S-19 represents a promising functional protein nanocarrier that could be used for various drug and gene delivery applications.
Collapse
Affiliation(s)
- Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| | - Dawei Ding
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| | - Ricardo A N S Ramos
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| | - Harini Mohanram
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| | - Kanagavel Deepankumar
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University , 148 Tianmushan Road, Hangzhou 310028, China
| | - Ali Miserez
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Center for Biomimetic Sensor Science, Nanyang Technological University , RTP/XF-06, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
33
|
Wilson KA, Wetmore SD. Combining crystallographic and quantum chemical data to understand DNA-protein π-interactions in nature. Struct Chem 2017. [DOI: 10.1007/s11224-017-0954-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Majdoul S, Seye AK, Kichler A, Holic N, Galy A, Bechinger B, Fenard D. Molecular Determinants of Vectofusin-1 and Its Derivatives for the Enhancement of Lentivirally Mediated Gene Transfer into Hematopoietic Stem/Progenitor Cells. J Biol Chem 2015; 291:2161-9. [PMID: 26668323 DOI: 10.1074/jbc.m115.675033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Gene delivery into hCD34+ hematopoietic stem/progenitor cells (HSPCs) using human immunodeficiency virus, type 1-derived lentiviral vectors (LVs) has several promising therapeutic applications. Numerous clinical trials are currently underway. However, the efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist, such as fibronectin fragments or cationic compounds. Recently, we discovered Vectofusin-1, a new transduction enhancer, also called LAH4-A4, a short histidine-rich amphipathic peptide derived from the LAH4 family of DNA transfection agents. Vectofusin-1 enhances the infectivity of lentiviral and γ-retroviral vectors pseudotyped with various envelope glycoproteins. In this study, we compared a family of Vectofusin-1 isomers and showed that Vectofusin-1 remains the lead peptide for HSPC transduction enhancement with LVs pseudotyped with vesicular stomatitis virus glycoproteins and also with modified gibbon ape leukemia virus glycoproteins. By comparing the capacity of numerous Vectofusin-1 variants to promote the modified gibbon ape leukemia virus glycoprotein-pseudotyped lentiviral vector infectivity of HSPCs, the lysine residues on the N-terminal extremity of Vectofusin-1, a hydrophilic angle of 140° formed by the histidine residues in the Schiffer-Edmundson helical wheel representation, hydrophobic residues consisting of leucine were all found to be essential and helped to define a minimal active sequence. The data also show that the critical determinants necessary for lentiviral transduction enhancement are partially different from those necessary for efficient antibiotic or DNA transfection activity of LAH4 derivatives. In conclusion, these results help to decipher the action mechanism of Vectofusin-1 in the context of hCD34+ cell-based gene therapy.
Collapse
Affiliation(s)
- Saliha Majdoul
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France
| | - Ababacar K Seye
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France
| | - Antoine Kichler
- CNRS, UMR_7199, 67401 Illkirch, France, the University of Strasbourg, 67000 Strasbourg, France, and
| | - Nathalie Holic
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France
| | - Anne Galy
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France,
| | - Burkhard Bechinger
- the University of Strasbourg, 67000 Strasbourg, France, and the Institut de Chimie, CNRS, UMR_7177, 67401 Strasbourg, France
| | - David Fenard
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France,
| |
Collapse
|
36
|
Bélières M, Déjugnat C, Chouini-Lalanne N. Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties. Bioconjug Chem 2015; 26:2520-9. [DOI: 10.1021/acs.bioconjchem.5b00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Bélières
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| | - C. Déjugnat
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| | - N. Chouini-Lalanne
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| |
Collapse
|
37
|
Zhang Q, Gao H, He Q. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol Pharm 2015; 12:3105-18. [PMID: 26237247 DOI: 10.1021/acs.molpharmaceut.5b00428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| |
Collapse
|
38
|
Douat C, Aisenbrey C, Antunes S, Decossas M, Lambert O, Bechinger B, Kichler A, Guichard G. A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA. Angew Chem Int Ed Engl 2015; 54:11133-7. [PMID: 26246005 DOI: 10.1002/anie.201504884] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/04/2015] [Indexed: 12/21/2022]
Abstract
Despite significant advances in foldamer chemistry, tailored delivery systems based on foldamer architectures, which provide a high level of control over secondary structure, are curiously rare among non-viral technologies for transporting nucleic acids into cells. A potent pH-responsive, bioreducible cell-penetrating foldamer (CPF) was developed through covalent dimerization of a short (8-mer) amphipathic oligourea sequence bearing histidine-type units. This CPF exhibits a high capacity to assemble with pDNA and mediates efficient delivery of nucleic acids into the cell. Furthermore, it does not adversely affect cellular viability and was shown to compare favorably with a cognate peptide transfection agent based on His-rich sequences.
Collapse
Affiliation(s)
- Céline Douat
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France).,CNRS, CBMN, UMR 5248, 33600 Pessac (France)
| | - Christopher Aisenbrey
- Membrane Biophysics and NMR, Chemistry Institute, University of Strasbourg-CNRS UMR7177, 4, Rue Blaise Pascal, 67008 Strasbourg (France)
| | - Stéphanie Antunes
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France).,CNRS, CBMN, UMR 5248, 33600 Pessac (France)
| | - Marion Decossas
- CNRS, CBMN, UMR 5248, 33600 Pessac (France).,Univ. Bordeaux, CBMN, UMR 5248, All. Geoffroy Saint-Hilaire, 33600 Pessac (France)
| | - Olivier Lambert
- CNRS, CBMN, UMR 5248, 33600 Pessac (France).,Univ. Bordeaux, CBMN, UMR 5248, All. Geoffroy Saint-Hilaire, 33600 Pessac (France)
| | - Burkhard Bechinger
- Membrane Biophysics and NMR, Chemistry Institute, University of Strasbourg-CNRS UMR7177, 4, Rue Blaise Pascal, 67008 Strasbourg (France)
| | - Antoine Kichler
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR 7199 CNRS-Université de Strasbourg, Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch cedex (France).
| | - Gilles Guichard
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France). .,CNRS, CBMN, UMR 5248, 33600 Pessac (France).
| |
Collapse
|
39
|
Douat C, Aisenbrey C, Antunes S, Decossas M, Lambert O, Bechinger B, Kichler A, Guichard G. A Cell-Penetrating Foldamer with a Bioreducible Linkage for Intracellular Delivery of DNA. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Boisguérin P, Deshayes S, Gait MJ, O'Donovan L, Godfrey C, Betts CA, Wood MJA, Lebleu B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 2015; 87:52-67. [PMID: 25747758 PMCID: PMC7102600 DOI: 10.1016/j.addr.2015.02.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
Oligonucleotide-based drugs have received considerable attention for their capacity to modulate gene expression very specifically and as a consequence they have found applications in the treatment of many human acquired or genetic diseases. Clinical translation has been often hampered by poor biodistribution, however. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular delivery of non-permeant biomolecules such as nucleic acids. This review focuses on CPP-delivery of several classes of oligonucleotides (ONs), namely antisense oligonucleotides, splice switching oligonucleotides (SSOs) and siRNAs. Two main strategies have been used to transport ONs with CPPs: covalent conjugation (which is more appropriate for charge-neutral ON analogues) and non-covalent complexation (which has been used for siRNA delivery essentially). Chemical synthesis, mechanisms of cellular internalization and various applications will be reviewed. A comprehensive coverage of the enormous amount of published data was not possible. Instead, emphasis has been put on strategies that have proven to be effective in animal models of important human diseases and on examples taken from the authors' own expertise.
Collapse
Affiliation(s)
- Prisca Boisguérin
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France.
| | - Sébastien Deshayes
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Liz O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Caroline Godfrey
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Corinne A Betts
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Bernard Lebleu
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France
| |
Collapse
|
41
|
Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine. Macromol Res 2015. [DOI: 10.1007/s13233-015-3074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Such GK, Yan Y, Johnston APR, Gunawan ST, Caruso F. Interfacing materials science and biology for drug carrier design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2278-2297. [PMID: 25728711 DOI: 10.1002/adma.201405084] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.
Collapse
Affiliation(s)
- Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
43
|
Funamoto D, Asai D, Kim CW, Nakamura Y, Lee EK, Nobori T, Niidome T, Mori T, Katayama Y. Tandemly Repeated Peptide for Cancer-specific Gene Carrier Prepared by Native Chemical Ligation. CHEM LETT 2015. [DOI: 10.1246/cl.141121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daiki Funamoto
- Graduate School of System Life Sciences, Kyushu University
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine
| | - Chan Woo Kim
- Graduate School of System Life Sciences, Kyushu University
| | - Yuta Nakamura
- Graduate School of System Life Sciences, Kyushu University
| | - Eun Kyung Lee
- Graduate School of System Life Sciences, Kyushu University
| | | | - Takuro Niidome
- Graduate School of System Life Sciences, Kyushu University
| | - Takeshi Mori
- Graduate School of System Life Sciences, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Yoshiki Katayama
- Graduate School of System Life Sciences, Kyushu University
- Center for Future Chemistry, Kyushu University
| |
Collapse
|
44
|
Jagani H, Kasinathan N, Meka SR, Josyula VR. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1212-21. [DOI: 10.3109/21691401.2015.1019668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hitesh Jagani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Narayanan Kasinathan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Sreenivasa Reddy Meka
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
45
|
Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:581-92. [DOI: 10.1016/j.bbamem.2014.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 11/05/2014] [Indexed: 01/07/2023]
|
46
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
47
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
48
|
Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opin Drug Deliv 2014; 11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:83-91. [DOI: 10.3109/21691401.2014.913054] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Islami M, Mehrnejad F, Doustdar F, Alimohammadi M, Khadem-Maaref M, Mir-Derikvand M, Taghdir M. Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Chem Biol Drug Des 2014; 84:242-52. [PMID: 24581146 DOI: 10.1111/cbdd.12311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/29/2022]
Abstract
LAH4 is an antimicrobial peptide that is believed to possess both antibiotic and DNA delivery capabilities. It is one of a number of membrane-active peptides that show increased affinity toward anionic lipids. Herein, we have performed molecular dynamics simulations to compare LAH4 effects on anionic palmitoyl-oleoyl-phosphatidylglycerol bilayer, which approximate a prokaryotic membrane environment and zwitterionic palmitoyl-oleoyl-phosphatidylcholine bilayer, which approximate a eukaryotic membrane environment. One particular interest in this work is to study how different kinds of lipid bilayers respond to the attraction of LAH4. Remarkably, our data have shown that the depth of peptide penetration strongly depends on membrane composition and pH. At acidic pH, LAH4 has exhibited a high tendency to interact strongly with and be adsorbed on anionic membrane. We have also shown that electrostatic interactions between His11 and the phosphor atoms of bilayers should have a significant impact on the penetration of LAH4. These results provide insights into the interactions of LAH4 and lipid bilayers at the atomic level, which is useful to understand cell selectivity and mechanism of the peptide action.
Collapse
Affiliation(s)
- Matin Islami
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | | | | | | | | | | | | |
Collapse
|