1
|
Ban E, Kim A. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions. Anal Biochem 2024; 692:115577. [PMID: 38789006 DOI: 10.1016/j.ab.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments. As an alternative, PicoGreen (PG) has emerged as a valuable method for the quantitative analysis of nucleic acids. PG, a fluorescent dye, enables the quantitation of double-stranded DNA (dsDNA) or double-stranded RNA, including miRNA mimic and siRNA, in solution. It is also applicable to DNA and RNA analysis within cells using techniques like FACS and fluorescence microscopy. Despite its advantages, PG's fluorescence intensity is affected by various experimental conditions, such as pH, salts, and chemical reagents. This review explores the recent applications of PG as a rapid, cost-effective, robust, and accurate assay tool for nucleic acid quantification. We also address the limitations of PG and discuss approaches to overcome these challenges, recognizing the expanding range of its applications.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|
2
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
3
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
4
|
Yan S, Ren BY, Shen J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. INSECT SCIENCE 2021; 28:21-34. [PMID: 32478473 DOI: 10.1111/1744-7917.12822] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 05/13/2020] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) targeting lethal genes in insects has great potential for sustainable crop protection. Compared with traditional double-stranded (ds)RNA delivery systems, nanoparticles such as chitosan, liposomes, and cationic dendrimers offer advantages in delivering dsRNA/small interfering (si)RNA to improve RNAi efficiency, thus promoting the development and practice of RNAi-based pest management strategies. Here, we illustrate the limitations of traditional dsRNA delivery systems, reveal the mechanism of nanoparticle-mediated RNAi, summarize the recent progress and successful applications of nanoparticle-mediated RNAi in pest management, and finally address the prospects of nanoparticle-based RNA pesticides.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Bin-Yuan Ren
- National Agricultural Technology Extension and Service Center, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Mainini F, Eccles MR. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules 2020; 25:E2692. [PMID: 32532030 PMCID: PMC7321291 DOI: 10.3390/molecules25112692] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) uses small interfering RNAs (siRNAs) to mediate gene-silencing in cells and represents an emerging strategy for cancer therapy. Successful RNAi-mediated gene silencing requires overcoming multiple physiological barriers to achieve efficient delivery of siRNAs into cells in vivo, including into tumor and/or host cells in the tumor micro-environment (TME). Consequently, lipid and polymer-based nanoparticle siRNA delivery systems have been developed to surmount these physiological barriers. In this article, we review the strategies that have been developed to facilitate siRNA survival in the circulatory system, siRNA movement from the blood into tissues and the TME, targeted siRNA delivery to the tumor or specific cell types, cellular uptake, and escape from endosomal degradation. We also discuss the use of various types of lipid and polymer-based carriers for cancer therapy, including a section on anti-tumor nanovaccines enhanced by siRNAs. Finally, we review current and recent clinical trials using NPs loaded with siRNAs for cancer therapy. The siRNA cancer therapeutics field is rapidly evolving, and it is conceivable that precision cancer therapy could, in the relatively near future, benefit from the combined use of cancer therapies, for example immune checkpoint blockade together with gene-targeting siRNAs, personalized for enhancing and fine-tuning a patient's therapeutic response.
Collapse
Affiliation(s)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
6
|
Sarkar S, Tran N, Soni SK, Conn CE, Drummond CJ. Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases. ACS Biomater Sci Eng 2020; 6:4401-4413. [DOI: 10.1021/acsbiomaterials.0c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sarvesh Kumar Soni
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Calum J. Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
7
|
Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214:62-91. [PMID: 31369717 DOI: 10.1016/j.trsl.2019.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Nanocarriers as drug delivery systems are promising and becoming popular, especially for cancer treatment. In addition to improving the pharmacokinetics of poorly soluble hydrophobic drugs by solubilizing them in a hydrophobic core, nanocarriers allow cancer-specific combination drug deliveries by inherent passive targeting phenomena and adoption of active targeting strategies. Nanoparticle-drug formulations can enhance the safety, pharmacokinetic profiles, and bioavailability of locally or systemically administered drugs, leading to improved therapeutic efficacy. Gene silencing by RNA interference (RNAi) is rapidly developing as a personalized field of cancer treatment. Small interfering RNAs (siRNAs) can be used to switch off specific cancer genes, in effect, "silence the gene, silence the cancer." siRNA can be used to silence specific genes that produce harmful or abnormal proteins. The activity of siRNA can be used to harness cellular machinery to destroy a corresponding sequence of mRNA that encodes a disease-causing protein. At present, the main barrier to implementing siRNA therapies in clinical practice is the lack of an effective delivery system that protects the siRNA from nuclease degradation, delivers to it to cancer cells, and releases it into the cytoplasm of targeted cancer cells, without creating adverse effects. This review provides an overview of various nanocarrier formulations in both research and clinical applications with a focus on combinations of siRNA and chemotherapeutic drug delivery systems for the treatment of multidrug resistant cancer. The use of various nanoparticles for siRNA-drug delivery, including liposomes, polymeric nanoparticles, dendrimers, inorganic nanoparticles, exosomes, and red blood cells for targeted drug delivery in cancer is discussed.
Collapse
|
8
|
Sharma M, El-Sayed NS, Do H, Parang K, Tiwari RK, Aliabadi HM. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep 2017; 7:6093. [PMID: 28733622 PMCID: PMC5522445 DOI: 10.1038/s41598-017-06381-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins. We synthesized six fatty acyl-peptide conjugates, using a diverse chain of saturated and unsaturated fatty acids to study the efficiency of this approach. At peptide:siRNA weight/weight ratio of 10:1 (N/P ≈ 13.6), almost all the peptides showed complete binding with siRNA, and at a w/w ratio of 20:1 (N/P ≈ 27.3), complete protection of siRNA from early enzymatic degradation was observed. Conjugated peptides and peptide/siRNA complexes did not show significant cytotoxicity in selected cell lines. The oleic acid-conjugated peptide showed the highest efficiency in siRNA uptake and silencing of kinesin spindle protein at peptide:siRNA w/w ratio of 80:1 (N/P ≈ 109). The siRNA internalization into non-tumorigenic kidney cells was negligible with all fatty acyl-peptide conjugates. These results indicate that conjugation of fatty acids to CGKRK could create an efficient delivery system for siRNA silencing specifically in tumor cells.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
- Cellulose and Paper Department, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Hung Do
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| |
Collapse
|
9
|
Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016; 99:129-137. [PMID: 26900977 DOI: 10.1016/j.addr.2016.01.022] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/03/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have shown promise as delivery vehicles for therapeutic oligonucleotides, including antisense oligos (ONs), siRNA, and microRNA mimics and inhibitors. In addition to a cationic lipid, LNPs are typically composed of helper lipids that contribute to their stability and delivery efficiency. Helper lipids with cone-shape geometry favoring the formation hexagonal II phase, such as dioleoylphosphatidylethanolamine (DOPE), can promote endosomal release of ONs. Meanwhile, cylindrical-shaped lipid phosphatidylcholine can provide greater bilayer stability, which is important for in vivo application of LNPs. Cholesterol is often included as a helper that improves intracellular delivery as well as LNP stability in vivo. Inclusion of a PEGylating lipid can enhance LNP colloidal stability in vitro and circulation time in vivo but may reduce uptake and inhibit endosomal release at the cellular level. This problem can be addressed by choosing reversible PEGylation in which the PEG moiety is gradually released in blood circulation. pH-sensitive anionic helper lipids, such as fatty acids and cholesteryl hemisuccinate (CHEMS), can trigger low-pH-induced changes in LNP surface charge and destabilization that can facilitate endosomal release of ONs. Generally speaking, there is no correlation between LNP activity in vitro and in vivo because of differences in factors limiting the efficiency of delivery. Designing LNPs requires the striking of a proper balance between the need for particle stability, long systemic circulation time, and the need for LNP destabilization inside the target cell to release the oligonucleotide cargo, which requires the proper selection of both the cationic and helper lipids. Customized design and empirical optimization is needed for specific applications.
Collapse
Affiliation(s)
- Xinwei Cheng
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH 43210, United States
| | - Robert J Lee
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
10
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
11
|
|
12
|
Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine 2012; 7:4185-98. [PMID: 22904628 PMCID: PMC3418104 DOI: 10.2147/ijn.s34489] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Poly(ethylene glycol)–distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers are biocompatible and amphiphilic polymers that can be widely utilized in the preparation of liposomes, polymeric nanoparticles, polymer hybrid nanoparticles, solid lipid nanoparticles, lipid–polymer hybrid nanoparticles, and microemulsions. Particularly, the terminal groups of PEG can be activated and linked to various targeting ligands, which can prolong the circulation time, improve the drug bioavailability, reduce undesirable side effects, and especially target specific cells, tissues, and even the intracellular localization in organelles. This review herein aims to describe recent developments in drug carriers exploiting PEG-DSPE block copolymers and their derivatives, and the incorporation of different ligands to the end groups of PEG-DSPE to target delivery, focusing on their modification approaches, advantages, applications, and the probable associated drawbacks.
Collapse
Affiliation(s)
- Rongrong Wang
- Campus Hospital of Zhejiang University, and Research Center for Biomedicine and Health, Hangzhou Normal University, 1378 Wen Yi Xi Road, Hangzhou, Zhejiang, China. /
| | | | | | | | | |
Collapse
|
13
|
Rudorf S, Rädler JO. Self-assembly of stable monomolecular nucleic acid lipid particles with a size of 30 nm. J Am Chem Soc 2012; 134:11652-8. [PMID: 22694262 DOI: 10.1021/ja302930b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of efficient nucleic acid complexes is key to progress in genetic research and therapies based on RNA interference. For optimal transport within tissue and across extracellular barriers, nucleic acid carriers need to be small and stable. In this Article, we prepare and characterize mono-nucleic acid lipid particles (mono-NALPs). The particles consist of single short double-stranded oligonucleotides or single siRNA molecules each encapsulated within a closed shell of a cationic-zwitterionic lipid bilayer, furnished with an outer polyethylene glycol (PEG) shield. The particles self-assemble by solvent exchange from a solution containing nucleic acid mixed with the four lipid components DOTAP, DOPE, DOPC, and DSPE-PEG(2000). Using fluorescence correlation spectroscopy, we monitor the formation of mono-NALPs from short double-stranded oligonucleotides or siRNA and lipids into monodisperse particles of approximately 30 nm in diameter. Small angle neutron and X-ray scattering and transmission electron microscopy experiments substantiate a micelle-like core-shell structure of the particles. The PEGylated lipid shell protects the nucleic acid core against degradation by nucleases, sterically stabilizes the mono-NALPs against disassembly in collagen networks, and prevents nonspecific binding to cells. Hence, PEG-lipid shielded mono-NALPs are the smallest stable siRNA lipid system possible and may provide a structural design to be built upon for the development of novel nucleic acid delivery systems with enhanced biodistribution in vivo.
Collapse
Affiliation(s)
- Sophia Rudorf
- Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | | |
Collapse
|
14
|
Wang L, Li M, Zhang N. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int J Nanomedicine 2012; 7:3281-94. [PMID: 22802688 PMCID: PMC3396388 DOI: 10.2147/ijn.s32520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to develop two novel drug delivery systems based on biodegradable docetaxel-lipid-based-nanosuspensions. The first one was poly(ethylene glycol)- modified docetaxel-lipid-based-nanosuspensions (pLNS). It was developed to increase the cycle time of the drug within the body and enhance the accumulation of the drug at the tumor site. The second one was targeted docetaxel-lipid-based-nanosuspensions (tLNS) using folate as the target ligand. The tLNS could target the tumor cells that overexpressed folate receptor (FR). The morphology, particle size, and zeta potential of pLNS and tLNS were characterized, respectively. The in vitro cytotoxicity evaluation of Duopafei®, pLNS, and tLNS were performed in human hepatocellular liver carcinoma HepG2 (FR−) and B16 (FR+) cells, respectively. The in vivo antitumor efficacy and pharmacokinetics, as well as the drug tissue distribution, were evaluated in Kunming mice bearing B16 cells. The particle size of pLNS was 204.2 ± 6.18 nm and tLNS had a mean particle size of 220.6 ± 9.54 nm. Cytotoxicity of tLNS against B16 (FR+) cell lines was superior to pLNS (P < 0.05), while there was no significant difference in the half maximum inhibitory concentration values for HepG2 (FR−) cells between pLNS and tLNS. The results of the in vivo antitumor efficacy evaluation showed that tLNS exhibited higher antitumor efficacy by reducing tumor volume (P < 0.01) compared with Duopafei and pLNS, respectively. The results of the in vivo biodistribution study indicate that the better antitumor efficacy of tLNS was attributed to the increased accumulation of the drug in the tumor.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmaceutical Science, Shandong University, Jinan, Shandong, China
| | | | | |
Collapse
|
15
|
Asymmetric 1-alkyl-2-acyl phosphatidylcholine: a helper lipid for enhanced non-viral gene delivery. Int J Pharm 2011; 427:64-70. [PMID: 21718766 DOI: 10.1016/j.ijpharm.2011.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Rationally designed asymmetrical alkylacyl phosphatidylcholines (APC) have been synthesized and evaluated as helper lipids for non-viral gene delivery. A long aliphatic chain (C22-C24) was introduced at the 1-position of glycerol backbone, a branched lipid chain (C18) at the 2-position, and a phosphocholine head group at the 3-position. The fusogenicity of APC depends on the length and degree of saturation of the alkyl chain. Cationic lipids were formulated with APC as either lipoplexes or nanolipoparticles, and evaluated for their stability, transfection efficiency, and cytotoxicity. APC mediated high in vitro transfection efficiency, and had low cytotoxicity. Small nanolipoparticles (less than 100 nm) can be obtained with APC by applying as low as 0.1% PEG-lipid. Our study extends the type of helper lipids that are suitable for gene transfer and points the way to improve non-viral nucleic acid delivery system other than the traditional cationic lipids optimization.
Collapse
|
16
|
Zhou Y, Zou H, Zhang S, Marks JD. Internalizing cancer antibodies from phage libraries selected on tumor cells and yeast-displayed tumor antigens. J Mol Biol 2010; 404:88-99. [PMID: 20851130 DOI: 10.1016/j.jmb.2010.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/23/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
A number of approaches have been utilized to generate antibodies to cancer cell surface receptors that can be used as potential therapeutics. A number of these therapeutic approaches, including antibody-drug conjugates, immunotoxins, and targeted nucleic acid delivery, require antibodies that not only bind receptor but also undergo internalization into the cell upon binding. We previously reported on the ability to generate cancer cell binding and internalizing antibodies directly from human phage antibody libraries selected for internalization into cancer cell lines. While a number of useful antibodies have been generated using this approach, limitations include the inability to direct the selections to specific antigens and to identify the antigen bound by the antibodies. Here we show that these limitations can be overcome by using yeast-displayed antigens known to be associated with a cell type to select the phage antibody output after several rounds of selection on a mammalian cell line. We used this approach to generate several human phage antibodies to yeast-displayed EphA2 and CD44. The antibodies bound both yeast-displayed and mammalian cell surface antigens, and were endocytosed upon binding to mammalian cells. This approach is generalizable to many mammalian cell surface proteins, results in the generation of functional internalizing antibodies, and does not require antigen expression and purification for antibody generation.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, Room 3C-38,San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| | | | | | | |
Collapse
|
17
|
Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010; 146:264-75. [PMID: 20385184 DOI: 10.1016/j.jconrel.2010.04.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/05/2010] [Indexed: 12/16/2022]
Abstract
HER2 is highly expressed in a significant proportion of breast cancer, ovarian cancer, and gastric cancer. Since the discovery of its role in tumorigenesis, HER2 has received great attention in cancer research during the past two decades. Successful development of the humanized monoclonal anti-HER2 antibody (Trastuzumab) for the treatment of breast cancer further spurred scientists to develop various HER2 specific antibodies, dimerization inhibitors and kinase inhibitors for cancer therapy. On the other hand, the high expression of HER2 and the accessibility of its extracellular domain make HER2 an ideal target for the targeted delivery of anti-tumor drugs as well as imaging agents. Although there is no natural ligand for HER2, artificial ligands targeting HER2 have been developed and applied in various targeted drug delivery systems. The emphasis of this review is to elucidate the roles of HER2 in cancer therapy and targeted drug delivery. The structure and signal pathway of HER2 will be briefly described. The role of HER2 in tumorigenesis and its relationship with other tumor markers will be discussed. For the HER2 targeted cancer therapy, numerous strategies including the blockage of receptor dimerization, inhibition of the tyrosine kinase activity, and interruption of the downstream signal pathway will be summarized. For the targeted drug delivery to HER2 positive tumor cells, various targeting ligands and their delivery systems will be described in details.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
18
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
19
|
Kamiya S, Kurita T, Miyagishima A, Arakawa M. Preparation of griseofulvin nanoparticle suspension by high-pressure homogenization and preservation of the suspension with saccharides and sugar alcohols. Drug Dev Ind Pharm 2009; 35:1022-8. [DOI: 10.1080/03639040802698786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ye J, Liu AL. Chapter 6 Functionalization of Carbon Nanotubes and Nanoparticles with Lipid. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1554-4516(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24:438-49. [PMID: 17252188 DOI: 10.1007/s11095-006-9180-5] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/16/2006] [Indexed: 01/13/2023]
Abstract
Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid-nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle-cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.
Collapse
Affiliation(s)
- Weijun Li
- Departament of Biopharmaceutidal Sciences, School of Pharmacy, University of California at San Francisco, San Francisco, California 94143-0046, USA
| | | |
Collapse
|
22
|
Benvenuti M, Mangani S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat Protoc 2007; 2:1633-51. [PMID: 17641629 DOI: 10.1038/nprot.2007.198] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The preparation of protein single crystals represents one of the major obstacles in obtaining the detailed 3D structure of a biological macromolecule. The complete automation of the crystallization procedures requires large investments in terms of money and labor, which are available only to large dedicated infrastructures and is mostly suited for genomic-scale projects. On the other hand, many research projects from departmental laboratories are devoted to the study of few specific proteins. Here, we try to provide a series of protocols for the crystallization of soluble proteins, especially the difficult ones, tailored for small-scale research groups. An estimate of the time needed to complete each of the steps described can be found at the end of each section.
Collapse
Affiliation(s)
- Manuela Benvenuti
- Dipartimento di Chimica, Università di Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | |
Collapse
|
23
|
Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev 2007; 59:124-33. [PMID: 17459519 PMCID: PMC7103292 DOI: 10.1016/j.addr.2007.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 03/04/2007] [Indexed: 01/13/2023]
Abstract
SiRNAs exert their biological effect by guiding the degradation of their cognate mRNA sequence, thereby shutting down the corresponding protein production (gene silencing by RNA interference or RNAi). Due to this property, siRNAs are emerging as promising therapeutic agents for the treatment of inherited and acquired diseases, as well as research tools for the elucidation of gene function in both health and disease. Because of their lethality and prevalence, lung diseases have attracted particular attention as targets of siRNA-mediated cures. In addition, lung is accessible to therapeutic agents via multiple routes, e.g., through the nose and the mouth, thus obviating the need for targeting and making it an appealing target for RNAi-based therapeutic strategies. The clinical success of siRNA-mediated interventions critically depends upon the safety and efficacy of the delivery methods and agents. Delivery of siRNAs relevant to lung diseases has been attempted through multiple routes and using various carriers in animal models. This review focuses on the recent progress in non-viral delivery of siRNAs for the treatment of lung diseases, particularly infectious diseases. The rapid progress will put siRNA-based therapeutics on fast track to the clinic.
Collapse
Affiliation(s)
- Mini Thomas
- Department of Chemistry and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|