1
|
Sahu S, Garg A, Saini R, Debnath A. Interface Water Assists in Dimethyl Sulfoxide Crossing and Poration in Model Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5764-5775. [PMID: 38445595 DOI: 10.1021/acs.langmuir.3c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Understanding the mechanism of transport and pore formation by a commonly used cryoprotectant, dimethyl sulfoxide (DMSO), across cell membranes is fundamentally crucial for drug delivery and cryopreservation. To shed light on the mechanism and thermodynamics of pore formation and crossing behavior of DMSO, extensive all-atom molecular dynamics simulations of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) bilayers are performed at various concentrations of DMSO at a temperature above the physiological temperature. Our results unveil that DMSO partially depletes water from the interface and positions itself between lipid heads without full dehydration. This induces a larger area per headgroup, increased disorder, and enhanced fluidity without any disintegration even at the highest DMSO concentration studied. The enhanced disorder fosters local fluctuations at the interface that nucleate dynamic and transient pores. The potential of mean force (PMF) of DMSO crossing is derived from two types of biased simulations: a single DMSO pulling using the umbrella sampling technique and a cylindrical pore formation using the recently developed chain reaction coordinate method. In both cases, DMSO crossing encounters a barrier attributed to unfavorable polar nonpolar interactions between DMSO and lipid tails. As the DMSO concentration increases, the barrier height reduces along with the faster lateral and perpendicular diffusion of DMSO suggesting favorable permeation. Our findings suggest that the energy required for pore formation decreases when water assists in the formation of DMSO pores. Although DMSO displaces water from the interface toward the far interface region without complete dehydration, the presence of interface water diminishes pore formation free energy. The existence of interface water leads to the formation of a two-dimensional percolated water-DMSO structure at the interface, which is absent otherwise. Overall, these insights into the mechanism of DMSO crossing and pore formation in the bilayer will contribute to understanding cryoprotectant behavior under supercooled conditions in the future.
Collapse
Affiliation(s)
- Samapika Sahu
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Avinash Garg
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Renu Saini
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
2
|
Urzì C, Hertig D, Meyer C, Maddah S, Nuoffer JM, Vermathen P. Determination of Intra- and Extracellular Metabolic Adaptations of 3D Cell Cultures upon Challenges in Real-Time by NMR. Int J Mol Sci 2022; 23:ijms23126555. [PMID: 35743000 PMCID: PMC9223855 DOI: 10.3390/ijms23126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
NMR flow devices provide longitudinal real-time quantitative metabolome characterisation of living cells. However, discrimination of intra- and extracellular contributions to the spectra represents a major challenge in metabolomic NMR studies. The present NMR study demonstrates the possibility to quantitatively measure both metabolic intracellular fingerprints and extracellular footprints on human control fibroblasts by using a commercially available flow tube system with a standard 5 mm NMR probe. We performed a comprehensive 3D cell culture system characterisation. Diffusion NMR was employed for intra- and extracellular metabolites separation. In addition, complementary extracellular footprints were determined. The implemented perfused NMR bioreactor system allowed the determination of 35 metabolites and intra- and extracellular separation of 19 metabolites based on diffusion rate differences. We show the reliability and sensitivity of NMR diffusion measurements to detect metabolite concentration changes in both intra- and extracellular compartments during perfusion with different selective culture media, and upon complex I inhibition with rotenone. We also demonstrate the sensitivity of extracellular footprints to determine metabolic variations at different flow rates. The current method is of potential use for the metabolomic characterisation of defect fibroblasts and for improving physiological comprehension.
Collapse
Affiliation(s)
- Christian Urzì
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Damian Hertig
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Christoph Meyer
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Sally Maddah
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
| | - Jean-Marc Nuoffer
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - Peter Vermathen
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Gupta A, Reshma G B, Singh P, Kohli E, Sengupta S, Ganguli M. A Combination of Synthetic Molecules Acts as Antifreeze for the Protection of Skin against Cold-Induced Injuries. ACS APPLIED BIO MATERIALS 2022; 5:252-264. [PMID: 35014815 DOI: 10.1021/acsabm.1c01058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Seasonal and occupational exposure of the human body to extreme cold temperatures can result in cell death in the exposed area due to the formation of ice crystals. This leads to superficial or deep burn injury and compromised functionality. Currently available therapeutics can be ineffective in extreme cases, and thus, it is necessary to develop prophylactic strategies. In this study, we have devised a combination of known synthetic cryopreservative agents (termed SynAFP) and evaluated their potential antifreeze applications on skin. The prophylactic activity of SynAFP in vitro is indicated by improved cellular revival and cell viability, retention of the cytoskeleton, and normal cell cycle progression even after cold stress. A comprehensive whole-cell proteomic approach revealed that in the presence of SynAFP, cold-induced downregulation of proteins involved in cell-cell adhesion and upregulation of those related to mitochondrial stress were ameliorated. Pre-application of SynAFP in mice facing a frostbite challenge prevents their skin from incurring significant injury as confirmed through macroscopic and histological examination. Moreover, multiple applications of SynAFP on mouse skin at room temperature did not compromise skin integrity. SynAFP was also formulated in anAloe vera-based cream (referred to as fSynAFP), which offered similar protection under cold stress conditions. Thus, SynAFP can be considered as a potential candidate for formulating a topical intervention for protection from cold-induced injuries to skin.
Collapse
Affiliation(s)
- Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Kohli
- Neurobiology Division, DIPAS, DRDO, Lucknow Road, Timarpur, Delhi 110054, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Xu Q, Jalilian E, Fakhoury JW, Manwar R, Michniak-Kohn B, Elkin KB, Avanaki K. Monitoring the topical delivery of ultrasmall gold nanoparticles using optical coherence tomography. Skin Res Technol 2019; 26:263-268. [PMID: 31556193 DOI: 10.1111/srt.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a promising imaging modality for skin cancer diagnosis. However, this capability has been hindered by the low contrast between normal and neoplastic tissue. To overcome this limitation, gold nanoparticles have been used to enhance the contrast in OCT images and are topically administered to reduce the risk of systematic side effects associated with intravenous injection. To ensure efficient penetration and distribution of the nanoparticles, an enhanced delivery strategy is required. In this porcine study, we assessed two delivery methods: (a) using dimethyl sulfoxide (DMSO) and (b) via sonophoresis. MATERIALS AND METHODS The gold nanoparticles were topically applied on pig skin before evaluating DMSO and sonophoresis as penetration enhancers in topical administration. The OCT images were taken from the same locations to monitor signal change. CONCLUSION The combination of DMSO and sonophoresis is an effective method to enhance the penetration and diffusion rate of nanoparticles during topical administration. SIGNIFICANCE Topical administration of nanoparticles is advantageous in dermatological applications. Nevertheless, efficient topical delivery remains a challenge. DMSO and sonophoresis can be used as two effective approaches to enhance topical delivery of nanoparticles.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Bozena Michniak-Kohn
- Center for Dermal Research (CDR) & Laboratory for Drug Delivery (LDD), Rutgers-The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Kamran Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Mlakar M, Cuculić V, Frka S, Gašparović B. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces. Bioelectrochemistry 2017; 120:10-17. [PMID: 29149664 DOI: 10.1016/j.bioelechem.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/28/2022]
Abstract
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10-11molcm-2. Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes.
Collapse
Affiliation(s)
- Marina Mlakar
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vlado Cuculić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sanja Frka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Blaženka Gašparović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
The role of amides in seminal cryopreservation of wild silverside, Odontesthes bonariensis. Cryobiology 2016; 73:383-387. [PMID: 27609248 DOI: 10.1016/j.cryobiol.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022]
Abstract
Amides were tested as internal cryoprotectants for the preservation of wild silverside (Odontesthes bonariensis) sperm. The semen was diluted in modified Mounib's medium and cryopreserved by adding 2, 5, 8 or 11% of dimethyl acetamide (DMA), dimethyl formamide (DMF) or methyl formamide (MF). Dimethyl sulfoxide (DMSO) at a concentration of 10% diluted in modified Mounib's medium was used as a control. The rate motility (17.7 ± 1.9%) and time motility (143.2 ± 9.7 s) (P < 0.05) of the sperm were higher with 2% DMF when compared with the other treatments. Despite the better motility results obtained with 2% DMF, the solution was not able to maintain cellular structure integrity of the cryopreserved sperm. The 10% DMSO and 8% MF treatment allowed for completeness of the plasma membrane (34.8% and 29%), functional mitochondria (19.8% and 16.2%) and plasma membrane fluidity (39.4% and 46.4%); furthermore, rate motility (11.8% and 10%) and time motility (81.4 s and 71.8 s) of the sperm were found to be at suitable levels when compared with 2% DMF. Thus, our evaluation suggests that 10% DMSO and 8% MF provide better cryopreservation of O. bonariensis sperm cells.
Collapse
|
7
|
Jacoby J, Kreitzer MA, Alford S, Malchow RP. Fluorescent imaging reports an extracellular alkalinization induced by glutamatergic activation of isolated retinal horizontal cells. J Neurophysiol 2013; 111:1056-64. [PMID: 24335210 DOI: 10.1152/jn.00768.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular acidification induced by retinal horizontal cells has been hypothesized to underlie lateral feedback inhibition onto vertebrate photoreceptors. To test this hypothesis, the H(+)-sensitive fluorophore 5-hexadecanoylaminofluorescein (HAF) was used to measure changes in H(+) from horizontal cells isolated from the retina of the catfish. HAF staining conditions were modified to minimize intracellular accumulation of HAF and maximize membrane-associated staining, and ratiometric fluorescent imaging of cells displaying primarily membrane-associated HAF fluorescence was conducted. Challenge of such HAF-labeled cells with glutamate or the ionotropic glutamate receptor agonist kainate produced an increase in the fluorescence ratio, consistent with an alkalinization response of +0.12 pH units and +0.23 pH units, respectively. This alkalinization was blocked by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the L-type calcium channel blocker nifedipine, and lanthanum. The alkalinization reported by HAF was consistent with extracellular alkalinizations detected in previous studies using self-referencing H(+)-selective microelectrodes. The spatial distribution of the kainate-induced changes in extracellular H(+) was also examined. An overall global alkalinization around the cell was observed, with no obvious signs of discrete centers of acidification. Taken together, these data argue against the hypothesis that glutamatergic-induced efflux of protons from horizontal cells mediates lateral feedback inhibition in the outer retina.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
8
|
Hughes ZE, Malajczuk CJ, Mancera RL. The Effects of Cryosolvents on DOPC−β-Sitosterol Bilayers Determined from Molecular Dynamics Simulations. J Phys Chem B 2013; 117:3362-75. [DOI: 10.1021/jp400975y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zak E. Hughes
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| | - Chris J. Malajczuk
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| | - Ricardo L. Mancera
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| |
Collapse
|
9
|
Cordeiro JMM, Soper AK. A hybrid neutron diffraction and computer simulation study on the solvation of N-methylformamide in dimethylsulfoxide. J Chem Phys 2013; 138:044502. [DOI: 10.1063/1.4773346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Hughes ZE, Mark AE, Mancera RL. Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes. J Phys Chem B 2012; 116:11911-23. [DOI: 10.1021/jp3035538] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Alan E. Mark
- School
of Chemistry and Molecular
Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
11
|
A Molecular Dynamics Study of DMPC Lipid Bilayers Interacting with Dimethylsulfoxide–Water Mixtures. J Membr Biol 2012; 245:807-14. [DOI: 10.1007/s00232-012-9483-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/30/2012] [Indexed: 11/26/2022]
|
12
|
Lin J, Novak B, Moldovan D. Molecular Dynamics Simulation Study of the Effect of DMSO on Structural and Permeation Properties of DMPC Lipid Bilayers. J Phys Chem B 2012; 116:1299-308. [DOI: 10.1021/jp208145b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jieqiong Lin
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Brian Novak
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dorel Moldovan
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
|
14
|
Chen X, Allen HC. Interactions of dimethylsulfoxide with a dipalmitoylphosphatidylcholine monolayer studied by vibrational sum frequency generation. J Phys Chem A 2010; 113:12655-62. [PMID: 19751059 DOI: 10.1021/jp905066w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interactions between phospholipid monolayers and dimethylsulfoxide (DMSO) molecules were investigated by vibrational sum frequency generation (VSFG) spectroscopy in a Langmuir trough system. Both the head and the tail groups of dipalmitoylphosphatidylcholine (DPPC) as well as DMSO were probed to provide a comprehensive understanding of the interactions between DPPC and DMSO molecules. A condensing effect is observed for the DPPC monolayer on a concentrated DMSO subphase (>20 mol %). This effect results in a well-ordered conformation for the DPPC alkyl chains at very large mean molecular areas. Interactions between DMSO and DPPC headgroups were also studied. DMSO-induced dehydration of the DPPC phosphate group is revealed at DMSO concentration above 10 mol %. The average orientation of DMSO with DPPC versus dipalmitoylphosphate sodium salt (DPPA) monolayers was compared. The comparison revealed that DMSO molecules are perturbed and reorient because of the interfacial electric field created by the charged lipid headgroups. The orientation of the DPPC alkyl chains remains nearly unchanged in the liquid condensed phase with the addition of DMSO. This suggests that DMSO molecules are expelled from the condensed monolayer. In addition, implications for the DMSO-induced permeability enhancement of biological membranes from this work are discussed.
Collapse
Affiliation(s)
- Xiangke Chen
- The Ohio State University, Department of Chemistry, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
15
|
Herrera FE, Pantano S. Salt induced asymmetry in membrane simulations by partial restriction of ionic motion. J Chem Phys 2009; 130:195105. [DOI: 10.1063/1.3132705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Molecular dynamics simulations of microstructure and mixing dynamics of cryoprotective solvents in water and in the presence of a lipid membrane. Biophys Chem 2008; 136:23-31. [DOI: 10.1016/j.bpc.2008.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/20/2022]
|
17
|
Denning EJ, Woolf TB. Chapter 14 Computational Models for Electrified Interfaces. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|