1
|
Scollo F, Tempra C, Evci H, Riopedre-Fernandez M, Olżyńska A, Javanainen M, Uday A, Cebecauer M, Cwiklik L, Martinez-Seara H, Jungwirth P, Jurkiewicz P, Hof M. Can calmodulin bind to lipids of the cytosolic leaflet of plasma membranes? Open Biol 2024; 14:240067. [PMID: 39288811 PMCID: PMC11500697 DOI: 10.1098/rsob.240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Calmodulin (CaM) is a ubiquitous calcium-sensitive messenger in eukaryotic cells. It was previously shown that CaM possesses an affinity for diverse lipid moieties, including those found on CaM-binding proteins. These facts, together with our observation that CaM accumulates in membrane-rich protrusions of HeLa cells upon increased cytosolic calcium, motivated us to perform a systematic search for unmediated CaM interactions with model lipid membranes mimicking the cytosolic leaflet of plasma membranes. A range of experimental techniques and molecular dynamics simulations prove unambiguously that CaM interacts with lipid bilayers in the presence of calcium ions. The lipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) hold the key to CaM-membrane interactions. Calcium induces an essential conformational rearrangement of CaM, but calcium binding to the headgroup of PS also neutralizes the membrane negative surface charge. More intriguingly, PE plays a dual role-it not only forms hydrogen bonds with CaM, but also destabilizes the lipid bilayer increasing the exposure of hydrophobic acyl chains to the interacting proteins. Our findings suggest that upon increased intracellular calcium concentration, CaM and the cytosolic leaflet of cellular membranes can be functionally connected.
Collapse
Affiliation(s)
- Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
2
|
De Mel JU, Gupta S, Willner L, Allgaier J, Stingaciu LR, Bleuel M, Schneider GJ. Manipulating Phospholipid Vesicles at the Nanoscale: A Transformation from Unilamellar to Multilamellar by an n-Alkyl-poly(ethylene oxide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2362-2375. [PMID: 33570419 PMCID: PMC8023706 DOI: 10.1021/acs.langmuir.0c03302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Indexed: 05/05/2023]
Abstract
We investigated the influence of an n-alkyl-PEO polymer on the structure and dynamics of phospholipid vesicles. Multilayer formation and about a 9% increase in the size in vesicles were observed by cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and small-angle neutron/X-ray scattering (SANS/SAXS). The results indicate a change in the lamellar structure of the vesicles by a partial disruption caused by polymer chains, which seems to correlate with about a 30% reduction in bending rigidity per unit bilayer, as revealed by neutron spin echo (NSE) spectroscopy. Also, a strong change in lipid tail relaxation was observed. Our results point to opportunities using synthetic polymers to control the structure and dynamics of membranes, with possible applications in technical materials and also in drug and nutraceutical delivery.
Collapse
Affiliation(s)
- Judith U. De Mel
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lutz Willner
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Jürgen Allgaier
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Laura R. Stingaciu
- Neutron
Sciences Directorate, Oak Ridge National
Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Markus Bleuel
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States
| | - Gerald J. Schneider
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol. Chem Phys Lipids 2013; 178:38-44. [PMID: 24316311 DOI: 10.1016/j.chemphyslip.2013.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
Lipid bilayer properties are quantified with a variety of arbitrary selected parameters such as molecular packing and dynamics, electrostatic potentials or permeability. In the paper we determined the effect of phloretin and 6-ketocholestanol (dipole potential modifying agents) on the membrane hydration and efficiency of the trans-membrane water flow. The dynamics of water molecules within the lipid bilayer interface was evaluated using solvent relaxation method, whereas the osmotically induced trans-membrane water flux was estimated with the stopped-flow method using the liposome shrinkage kinetics. The presence of phloretin or 6-ketocholestanol resulted in a change of both, the interfacial hydration level and osmotically driven water fluxes. Specifically, the presence of 6-ketocholestanol reduced the amount and mobility of water in the membrane interface. It also slows the osmotically induced water flow. The interfacial hydration change caused by phloretin was much smaller and the effect on osmotically induced water flow was opposite to that of 6-ketocholestanol.
Collapse
|
5
|
Barucha-Kraszewska J, Kraszewski S, Ramseyer C. Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1174-82. [PMID: 23311388 DOI: 10.1021/la304235r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development of fluorescence methods involves the necessity of understanding the fluorescent probes behavior in their ground and excited states. In the case of biological membranes, the position of the dyes in the lipid bilayer and their response after excitation are necessary parameters to correctly analyze the experiments. In the present work, we focus on two fluorescent markers, Laurdan (6-lauroyl-2-(N,N-dimethylamino)naphthalene) and its derivative C-Laurdan (6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene), recently proposed for lipid raft visualization [Kim, H. M.; et al. ChemBioChem 2007, 8, 553]. C-Laurdan, by the presence of an additional carboxyl group, has an advantage over Laurdan since it has a higher sensitivity to the membrane polarity at the lipid headgroup region and a higher water solubility. This theoretical study, based on quantum mechanical (QM) and molecular dynamics (MD) simulations in a fully hydrated lipid membrane model, compare the equilibrium and dynamic properties of both probes taking into account their fluorescence lifetimes. C-Laurdan is found to be more stable than Laurdan in the headgroup region of the membrane and also much more aligned with the lipids. This study suggests that, besides the lipid raft imaging, the C-Laurdan marker can considerably extend the capabilities of fluorescent solvent relaxation method.
Collapse
Affiliation(s)
- Justyna Barucha-Kraszewska
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université de Franche-Comté, Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25000 Besançon, France.
| | | | | |
Collapse
|
6
|
Navrátil T, Šestáková I, Štulík K, Mareček V. Electrochemical Measurements on Supported Phospholipid Bilayers: Preparation, Properties and Ion Transport Using Incorporated Ionophores. ELECTROANAL 2010. [DOI: 10.1002/elan.201000061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Esquembre R, Poveda JA, Mateo CR. Biophysical and Functional Characterization of an Ion Channel Peptide Confined in a Sol−Gel Matrix. J Phys Chem B 2009; 113:7534-40. [DOI: 10.1021/jp9019443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rocío Esquembre
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| | - José Antonio Poveda
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| | - C. Reyes Mateo
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| |
Collapse
|
8
|
Abstract
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Collapse
|