1
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Hawlina S, Chowdhury HH, Smrkolj T, Zorec R. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biol Direct 2022; 17:5. [PMID: 35197090 PMCID: PMC8864901 DOI: 10.1186/s13062-022-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
In 2009, new EU legislation regulating advanced therapy medicinal products (ATMPs), consisting of gene therapy, tissue engineering and cell-based medicines, was introduced. Although less than 20 ATMPs were authorized since that time, the awarding of the Nobel Prize for Physiology or Medicine in 2018 revived interest in developing new cancer immunotherapies involving significant manipulation of the patient's own immune cells, including lymphocytes and dendritic cells. The lymphocytes are mainly thought to directly affect tumour cells, dendritic cells are involved in indirect mechanisms by antigen presentation to other leukocytes orchestrating the immune response. It is the latter cells that are the focus of this brief review. Based on the recent results of our study treating patients with castration-resistant prostate cancer (CRPC) with an immunohybridoma cell construct (termed aHyC), produced by electrofusion of autologous tumour and dendritic cells, we compare their effectiveness with a matched documented control group of patients. The results revealed that cancer-specific survival and the time to next in-line therapy (TTNT) were both significantly prolonged versus controls. When patients were observed for longer periods since the time of diagnosis of CRPC, 20% of patients had not yet progressed to the next in-line therapy even though the time under observation was ~ 80 months. Interestingly, analysis of survival of patients revealed that the effectiveness of treatment was independent of the number of cells in the vaccine used for treatment. It is concluded that autologous dendritic cell-based immunotherapy is a new possibility to treat not only CRPC but also other solid tumours.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Haque Chowdhury H, Hawlina S, Gabrijel M, Trkov Bobnar S, Kreft M, Lenart G, Cukjati M, Kopitar AN, Kejžar N, Ihan A, Ležaič L, Grmek M, Kmetec A, Jeras M, Zorec R. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood CD56 bright CD16 - natural killer cells. Clin Transl Med 2021; 11:e505. [PMID: 34459140 PMCID: PMC8387785 DOI: 10.1002/ctm2.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/26/2023] Open
Affiliation(s)
- Helena Haque Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Gabrijel
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,CPAE, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gordan Lenart
- Clinical Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marko Cukjati
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Kejžar
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Ležaič
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Grmek
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Kmetec
- Clinical Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matjaž Jeras
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Chowdhury HH, Cerqueira SR, Sousa N, Oliveira JM, Reis RL, Zorec R. The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes – electrophysiological quantification. Biomater Sci 2018; 6:388-397. [DOI: 10.1039/c7bm00886d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Endocytosed dendrimer nanoparticles (NPs) are cleared from the astrocytes by an increased rate of transient exocytotic fusion events.
Collapse
Affiliation(s)
- Helena H. Chowdhury
- Laboratory of Neuroendocrinology – Molecular Cell Physiology
- Institute of Pathophysiology
- Faculty of Medicine
- 1000 Ljubljana
- Slovenia
| | - Susana R. Cerqueira
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)
- School of Health Sciences
- University of Minho
- 4710-057 Braga
- Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| | - Rui L. Reis
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| | - Robert Zorec
- Laboratory of Neuroendocrinology – Molecular Cell Physiology
- Institute of Pathophysiology
- Faculty of Medicine
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
6
|
Vardjan N, Verkhratsky A, Zorec R. Pathologic Potential of Astrocytic Vesicle Traffic: New Targets to Treat Neurologic Diseases? Cell Transplant 2015; 24:599-612. [DOI: 10.3727/096368915x687750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1228-38. [PMID: 24046863 DOI: 10.1016/j.bbalip.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MbetaCD enhanced the attenuation of C(m) increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MbetaCD resulted in an immediate C(m) decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in C(m) was three-fold slower than MbetaCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MbetaCD had no effect on the specific C(m) and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MbetaCD-induced C(m) decline. Thus acute exposure to MbetaCD evokes a C(m) decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.
Collapse
|
8
|
Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgačevski J, Kreft M, Zorec R. Astrocytic vesicle mobility in health and disease. Int J Mol Sci 2013; 14:11238-58. [PMID: 23712361 PMCID: PMC3709730 DOI: 10.3390/ijms140611238] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5′-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Mateja Gabrijel
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Saša Trkov
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-1543-7020; Fax: +386-1543-7036
| |
Collapse
|
9
|
Usaj M, Flisar K, Miklavcic D, Kanduser M. Electrofusion of B16-F1 and CHO cells: The comparison of the pulse first and contact first protocols. Bioelectrochemistry 2013; 89:34-41. [DOI: 10.1016/j.bioelechem.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 06/24/2012] [Accepted: 09/03/2012] [Indexed: 01/25/2023]
|
10
|
Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R. IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflammation 2012; 9:144. [PMID: 22734718 PMCID: PMC3423045 DOI: 10.1186/1742-2094-9-144] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022] Open
Abstract
Background In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs. Methods The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software. Results Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent. Conclusions Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical Center, Tehnološki Park 24, Ljubljana 1000, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kreft M, Prebil M, Chowdhury HH, Grilc S, Jensen J, Zorec R. Analysis of confocal images using variable-width line profiles. PROTOPLASMA 2010; 246:73-80. [PMID: 20229327 DOI: 10.1007/s00709-010-0127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/19/2010] [Indexed: 05/28/2023]
Abstract
A line profile of fluorescent intensities in confocal images is frequently examined. We have developed the computer software tool to analyse the profiles of intensities of fluorescent probes in confocal images. The software averages neighbouring pixels, adjacent to the central line, without reducing the spatial resolution of the image. As an experimental model, we have used the skeletal muscle fibre isolated from the rat skeletal muscle extensor digitorum brevis. As a marker of myofibrils' structure, we have used phalloidin-rhodamine staining and the anti-TIM antibody to label mitochondria. We also tested the distribution of the protein kinase B/Akt. Since signalling is ordered in modules and large protein complexes appear to direct signalling to organelles and regulate specific physiological functions, a software tool to analyse such complexes in fluorescent confocal images is required. The software displays the image, and the user defines the line for analysis. The image is rotated by the angle of the line. The line profile is calculated by averaging one dimension of the cropped rotated image matrix. The spatial resolution in averaged line profile is not decreased compared with single-pixel line profile, which was confirmed by the discrete Fourier transform computed with a fast Fourier transform algorithm. We conclude that the custom software tool presented here is a useful tool to analyse line profiles of fluorescence intensities in confocal images.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
12
|
Ušaj M, Trontelj K, Miklavčič D, Kandušer M. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membr Biol 2010; 236:107-16. [DOI: 10.1007/s00232-010-9272-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
|
13
|
Mondal S, Sarkar M. Non-Steroidal Anti-Inflammatory Drug Induced Membrane Fusion: Concentration and Temperature Effects. J Phys Chem B 2009; 113:16323-31. [DOI: 10.1021/jp9069527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sutapa Mondal
- Chemical Sciences Division, Saha Institute of Nuclear Physics 1/AF, Bidhannagar, Kolkata-700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics 1/AF, Bidhannagar, Kolkata-700064, India
| |
Collapse
|
14
|
Fused Late Endocytic Compartments and Immunostimulatory Capacity of Dendritic–Tumor Cell Hybridomas. J Membr Biol 2009; 229:11-8. [DOI: 10.1007/s00232-009-9171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|