1
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
2
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557275. [PMID: 37745567 PMCID: PMC10515945 DOI: 10.1101/2023.09.14.557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P. Luedke
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jiro Yoshino
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Chang Yin
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jessica M. Huang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Kevin Huynh
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Wang D, Wang H, Fan L, Ludwig T, Wegner A, Stahl F, Harre J, Warnecke A, Zeilinger C. A Chemical Chaperone Restores Connexin 26 Mutant Activity. ACS Pharmacol Transl Sci 2023; 6:997-1005. [PMID: 37470015 PMCID: PMC10353060 DOI: 10.1021/acsptsci.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 07/21/2023]
Abstract
Mutations in connexin 26 (Cx26) cause hearing disorders of a varying degree. Herein, to identify compounds capable of restoring the function of mutated Cx26, a novel miniaturized microarray-based screening system was developed to perform an optical assay of Cx26 functionality. These molecules were identified through a viability assay using HeLa cells expressing wild-type (WT) Cx26, which exhibited sensitivity toward the HSP90 inhibitor radicicol in the submicromolar concentration range. Open Cx26 hemichannels are assumed to mediate the passage of molecules up to 1000 Da in size. Thus, by releasing radicicol, WT Cx26 active hemichannels in HeLa cells contribute to a higher survival rate and lower cell viability when Cx26 is mutated. HeLa cells expressing Cx26 mutations exhibited reduced viability in the presence of radicicol, such as the mutants F161S or R184P. Next, molecules exhibiting chemical chaperoning activity, suspected of restoring channel function, were assessed regarding whether they induced superior sensitivity toward radicicol and increased HeLa cell viability. Through a viability assay and microarray-based flux assay that uses Lucifer yellow in HeLa cells, compounds 3 and 8 were identified to restore mutant functionality. Furthermore, thermophoresis experiments revealed that only 3 (VRT-534) exhibited dose-responsive binding to recombinant WT Cx26 and mutant Cx26K188N with half maximal effective concentration values of 19 and ∼5 μM, respectively. The findings of this study reveal that repurposing compounds already being used to treat other diseases, such as cystic fibrosis, in combination with functional bioassays and binding tests can help identify novel potential candidates that can be used to treat hearing disorders.
Collapse
Affiliation(s)
- Dahua Wang
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Hongling Wang
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Lu Fan
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Tobias Ludwig
- Technische
Universität Braunschweig, Braunschweig Integrated Centre of
Systems Biology (BRICS), Department of Bioinformatics
and Biochemistry, Rebenring
56, 38106 Braunschweig, Germany
| | - Andre Wegner
- Technische
Universität Braunschweig, Braunschweig Integrated Centre of
Systems Biology (BRICS), Department of Bioinformatics
and Biochemistry, Rebenring
56, 38106 Braunschweig, Germany
| | - Frank Stahl
- Gottfried-Wilhelm-Leibniz
University of Hannover, Institut für
Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167 Hannover, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), 30625 Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz
University of Hannover, BMWZ (Zentrum für
Biomolekulare Wirkstoffe), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
4
|
Hirschhäuser C, Lissoni A, Görge PM, Lampe PD, Heger J, Schlüter KD, Leybaert L, Schulz R, Boengler K. Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 2021; 116:21. [PMID: 33751227 PMCID: PMC7985055 DOI: 10.1007/s00395-021-00861-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.
Collapse
Affiliation(s)
- Christine Hirschhäuser
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Alessio Lissoni
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacqueline Heger
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Kerstin Boengler
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
5
|
Wang H, Stahl F, Scheper T, Steffens M, Warnecke A, Zeilinger C. Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep 2019; 9:13543. [PMID: 31537823 PMCID: PMC6753059 DOI: 10.1038/s41598-019-49423-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/24/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we show that human Connexin 26 (hCx26 or Cx26WT) hemichannel opening rapidly enables the transport of small molecules when triggered by temperature and by compensation of the Ca2+ blockade with EDTA. Point mutations within Cx26 were analysed by a novel optical microarray-based Lucifer Yellow uptake assay or by two electrode voltage clamp (TEVC) on frog oocytes to monitor simultaneous activities of channel proteins. Point mutations L90P, F161S, R184P or K188N influenced the temperature-dependent activity drastically. Since several mutations blocked trafficking, the temperature-dependent activity of the recombinant synthesized and purified wild-type Cx26WT and Cx26K188N hemichannel was tested by liposome flux assay (LFA) and on a microarray-based Lucifer Yellow uptake assay under warm conditions (>30 °C). The data from TEVC measurements and dye flux experiments showed that the mutations gave no or only a weak activity at increased temperature (>30 °C). We conclude that the position K188 in the Cx26WT forms a temperature-sensitive salt bridge with E47 whereas the exchange to K188N destabilizes the network loop- gating filter, which was recently identified as a part of the flexible Ca2+ binding site. We assume that the temperature sensitivity of Cx26 is required to protect cells from uncontrolled release or uptake activities through Cx26 hemichannels.
Collapse
Affiliation(s)
- Hongling Wang
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Thomas Scheper
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Melanie Steffens
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Athanasia Warnecke
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence EXC1077 "Hearing4all", German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft"), Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|
6
|
Wollweber M, Roth B. Raman Sensing and Its Multimodal Combination with Optoacoustics and OCT for Applications in the Life Sciences. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2387. [PMID: 31137716 PMCID: PMC6566696 DOI: 10.3390/s19102387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
Abstract
Currently, many optical modalities are being investigated, applied, and further developed for non-invasive analysis and sensing in the life sciences. To befit the complexity of the study objects and questions in this field, the combination of two or more modalities is attempted. We review our work on multimodal sensing concepts for applications ranging from non-invasive quantification of biomolecules in the living organism to supporting medical diagnosis showing the combined capabilities of Raman spectroscopy, optical coherence tomography, and optoacoustics.
Collapse
Affiliation(s)
- Merve Wollweber
- Laser Zentrum Hannover e.V., Industrial and Biomedical Optics Department, Hollerithallee 8, 30419 Hannover, Germany.
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany.
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
7
|
|
8
|
Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels. Biochem Soc Trans 2016; 43:519-23. [PMID: 26009201 DOI: 10.1042/bst20150040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results.
Collapse
|
9
|
Sala G, Badalamenti S, Ponticelli C. The Renal Connexome and Possible Roles of Connexins in Kidney Diseases. Am J Kidney Dis 2015; 67:677-87. [PMID: 26613807 DOI: 10.1053/j.ajkd.2015.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Connexins are membrane-spanning proteins that allow for the formation of cell-to-cell channels and cell-to-extracellular space hemichannels. Many connexin subtypes are expressed in kidney cells. Some mutations in connexin genes have been linked to various human pathologies, including cardiovascular, neurodegenerative, lung, and skin diseases, but the exact role of connexins in kidney disease remains unclear. Some hypotheses about a connection between genetic mutations, endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in kidney pathology have been explored. The potential relationship of kidney disease to abnormal production of connexin proteins, mutations in their genes together with ER stress, or the UPR is still a matter of debate. In this scenario, it is tantalizing to speculate about a possible role of connexins in the setting of kidney pathologies that are thought to be caused by a deregulated podocyte protein expression, the so-called podocytopathies. In this article, we give examples of the roles of connexins in kidney (patho)physiology and propose avenues for further research concerning connexins, ER stress, and UPR in podocytopathies that may ultimately help refine drug treatment.
Collapse
Affiliation(s)
- Gabriele Sala
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy.
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| | - Claudio Ponticelli
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| |
Collapse
|
10
|
Connexins and skin disease: insights into the role of beta connexins in skin homeostasis. Cell Tissue Res 2015; 360:645-58. [PMID: 25616557 DOI: 10.1007/s00441-014-2094-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Cell-to-cell communication triggered by connexin channels plays a central role in maintaining epidermal homeostasis. Here, we discuss the role of the beta connexin subgroup, where site-specific mutations in at least 4 of these proteins lead to distinctive non-inflammatory and inflammatory hyperproliferative epidermal disorders. Recent advances in the molecular pathways evoked and correlation with clinical outcome are discussed. The latest data provide increasing evidence that connexins in the epidermis are sensors to environmental stress and that targeting aberrant hemichannel activity holds significant therapeutic potential for inflammatory skin disorders.
Collapse
|
11
|
Kniggendorf AK, Meinhardt-Wollweber M, Yuan X, Roth B, Seifert A, Fertig N, Zeilinger C. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes. BIOMEDICAL OPTICS EXPRESS 2014; 5:2054-65. [PMID: 25071948 PMCID: PMC4102348 DOI: 10.1364/boe.5.002054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 05/22/2023]
Abstract
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Hanover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 17, 30167 Hanover, Germany
| | - Merve Meinhardt-Wollweber
- Hanover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 17, 30167 Hanover, Germany
- Cluster of Excellence Hearing4All, Hanover, Germany
| | - Xiaogang Yuan
- Hanover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 17, 30167 Hanover, Germany
| | - Bernhard Roth
- Hanover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 17, 30167 Hanover, Germany
| | - Astrid Seifert
- Nanion Technologies GmbH, Gabrielenstr. 9, 80636 Munich, Germany
| | - Niels Fertig
- Nanion Technologies GmbH, Gabrielenstr. 9, 80636 Munich, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz Universität Hannover and Biomolekulares Wirkstoffzentrum, Herrenhäuser Str. 2, 30419 Hanover, Germany
| |
Collapse
|
12
|
Martin PE, Easton JA, Hodgins MB, Wright CS. Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 2014; 588:1304-14. [PMID: 24607543 DOI: 10.1016/j.febslet.2014.02.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of connexins lead to epidermal dysplasias giving rise to a range of dermatological disorders of differing severity. 'Gain of function' mutations reveal connexin-mediated roles in calcium signalling within the epidermis. Connexins are involved in epidermal innate immunity, inflammation control and in wound repair. The therapeutic potential of targeting connexins to improve wound healing responses is now clear. This review discusses the role of connexins in epidermal integrity, and examines the emerging evidence that connexins act as epidermal sensors to a variety of mechanical, temperature, pathogen-induced and chemical stimuli. Connexins thus act as an integral component of the skin's protective barrier.
Collapse
Affiliation(s)
- Patricia E Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jennifer A Easton
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malcolm B Hodgins
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Catherine S Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
13
|
Valiunas V. Cyclic nucleotide permeability through unopposed connexin hemichannels. Front Pharmacol 2013; 4:75. [PMID: 23760880 PMCID: PMC3674318 DOI: 10.3389/fphar.2013.00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a well-known intracellular and intercellular second messenger. The membrane permeability of such molecules has potential importance for autocrine-like or paracrine-like delivery. Here experiments have been designed to demonstrate whether gap junction hemichannels, composed of connexins, are a possible entrance pathway for cyclic nucleotides into the interior of cells. HeLa cells stably expressing connexin43 (Cx43) and connexin26 (Cx26) were used to study the cyclic nucleotide permeability of gap junction hemichannels. For the detection of cAMP uptake, the cells were transfected using the cyclic nucleotide-modulated channel from sea urchin sperm (SpIH) as the cAMP sensor. SpIH derived currents (Im) were recorded in whole-cell/perforated patch clamp configuration. Perfusion of the cells in an external K+ aspartate- (KAsp) solution containing 500 μM cAMP and no extracellular Ca2+, yielded a five to sevenfold increase in the Im current level. The SpIH current increase was associated with detectable hemichannel current activity. Depolarization of cells in Ca2+-free NaCl perfusate with 500 μM cAMP also induced a SpIH current increase. Elevating extracellular Ca2+ to mM levels inhibited hemichannel activity. Perfusion with a depolarizing KAsp solution containing 500 μM cAMP and 2 mM Ca2+ did not increase SpIH currents. The addition of the gap junction blocker carbenoxolone to the external solution inhibited cAMP uptake. Both cell depolarization and lowered extracellular Ca2+ increase the open probability of non-junctional hemichannels. Accordingly, the SpIH current augmentation was induced by the uptake of extracellular cAMP via open membrane hemichannels in Cx43 and Cx26 expressing cells. The data presented here show that hemichannels of Cx43 and Cx26 are permeable to cAMP, and further the data suggest that hemichannels are, in fact, a potential pathway for cAMP mediated cell-to-cell signaling.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
14
|
Walter WJ, Zeilinger C, Bintig W, Kolb HA, Ngezahayo A. Phosphorylation in the C-terminus of the rat connexin46 (rCx46) and regulation of the conducting activity of the formed connexons. J Bioenerg Biomembr 2008; 40:397-405. [PMID: 18668357 DOI: 10.1007/s10863-008-9151-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/16/2008] [Indexed: 11/28/2022]
Abstract
To analyse the role of PKC-dependent phosphorylation in the C-terminus of rCx46 in regulation of rCx46 connexons, truncated mutants rCx46(45.3) and rCx46(44.2) which end before and after PKC-dependent phosphorylation sites respectively were generated. Both rCx46(45.3) and rCx46(44.2) formed connexons in Xenopus oocytes similar to Cx46(wt)-connexons. They were activated by depolarisation above -40 mV and at voltages above 50 mV, inactivation was spontaneously observed or induced by PKC activator TPA, suggesting that inactivation does not require PKC-dependent phosphorylation in the C-terminus. Three casein-kinase-II-(CKII)-dependent phosphorylation sites were also identified. rCx46(37.7) and rCx46(28.2) respectively without two or all of these sites were generated. rCx46(37.7)-connexons were similar to rCx46(wt)-connexons. rCx46(28.2)-connexons comparable to rCx46(wt)-connexons were observed after injection of 50 times more rCx46(28.2)-mRNA (25 ng per oocyte). CKII-blocker inhibited depolarisation-evoked currents in oocytes injected with 0.5 ng per oocyte rCx46(37.7)-mRNA or rCx46(wt)-mRNA. Injection of 25 ng per oocyte rCx46(37.7)-mRNA or rCx46(wt)-mRNA overcame the effect of CKII-inhibitor. We propose that CKII-dependent phosphorylation in the C-terminus accelerates formation of rCx46-connexons.
Collapse
Affiliation(s)
- Wilhelm J Walter
- Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|