1
|
Wang L, Lu H, Jiang Y. Natural Polyketides Act as Promising Antifungal Agents. Biomolecules 2023; 13:1572. [PMID: 38002254 PMCID: PMC10669366 DOI: 10.3390/biom13111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Invasive fungal infections present a significant risk to human health. The current arsenal of antifungal drugs is hindered by drug resistance, limited antifungal range, inadequate safety profiles, and low oral bioavailability. Consequently, there is an urgent imperative to develop novel antifungal medications for clinical application. This comprehensive review provides a summary of the antifungal properties and mechanisms exhibited by natural polyketides, encompassing macrolide polyethers, polyether polyketides, xanthone polyketides, linear polyketides, hybrid polyketide non-ribosomal peptides, and pyridine derivatives. Investigating natural polyketide compounds and their derivatives has demonstrated their remarkable efficacy and promising clinical application as antifungal agents.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
2
|
Morales-Amador A, Molina-Miras A, López-Rosales L, Sánchez-Mirón A, García-Camacho F, Souto ML, Fernández JJ. Isolation and Structural Elucidation of New Amphidinol Analogues from Amphidinium carterae Cultivated in a Pilot-Scale Photobioreactor. Mar Drugs 2021; 19:432. [PMID: 34436271 PMCID: PMC8399002 DOI: 10.3390/md19080432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The demand for valuable products from dinoflagellate biotechnology has increased remarkably in recent years due to their many prospective applications. However, there remain many challenges that need to be addressed in order to make dinoflagellate bioactives a commercial reality. In this article, we describe the technical feasibility of producing and recovering amphidinol analogues (AMs) excreted into a culture broth of Amphidinium carterae ACRN03, successfully cultured in an LED-illuminated pilot-scale (80 L) bubble column photobioreactor operated in fed-batch mode with a pulse feeding strategy. We report on the isolation of new structurally related AMs, amphidinol 24 (1, AM24), amphidinol 25 (2, AM25) and amphidinol 26 (3, AM26), from a singular fraction resulting from the downstream processing. Their planar structures were elucidated by extensive NMR and HRMS analysis, whereas the relative configuration of the C-32→C-47 bis-tetrahydropyran core was confirmed to be antipodal in accord with the recently revised configuration of AM3. The hemolytic activities of the new metabolites and other related derivatives were evaluated, and structure-activity conclusions were established. Their isolation was based on a straightforward and high-performance bioprocess that could be suitable for the commercial development of AMs or other high-value compounds from shear sensitive dinoflagellates.
Collapse
Affiliation(s)
- Adrián Morales-Amador
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| | - Alejandro Molina-Miras
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Lorenzo López-Rosales
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Asterio Sánchez-Mirón
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Francisco García-Camacho
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - María L. Souto
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| |
Collapse
|
3
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
4
|
Long M, Peltekis A, González-Fernández C, Hégaret H, Bailleul B. Allelochemicals of Alexandrium minutum: Kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom. HARMFUL ALGAE 2021; 103:101997. [PMID: 33980437 DOI: 10.1016/j.hal.2021.101997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Allelopathy is an efficient strategy by which some microalgae can outcompete other species. Allelochemicals from the toxic dinoflagellate Alexandrium minutum have deleterious effects on diatoms, inhibiting metabolism and photosynthesis and therefore give a competitive advantage to the dinoflagellate. The precise mechanisms of allelochemical interactions and the molecular target of allelochemicals remain however unknown. To understand the mechanisms, the short-term effects of A. minutum allelochemicals on the physiology of the diatom Chaetoceros muelleri were investigated. The effects of a culture filtrate were measured on the diatom cytoplasmic membrane integrity (polarity and permeability) using flow-cytometry and on the photosynthetic performance using fluorescence and absorption spectroscopy. Within 10 min, the unknown allelochemicals induced a depolarization of the cytoplasmic membranes and an impairment of photosynthesis through the inhibition of the plastoquinone-mediated electron transfer between photosystem II and cytochrome b6f. At longer time of exposure, the cytoplasmic membranes were permeable and the integrity of photosystems I, II and cytochrome b6f was compromised. Our demonstration of the essential role of membranes in this allelochemical interaction provides new insights for the elucidation of the nature of the allelochemicals. The relationship between cytoplasmic membranes and the inhibition of the photosynthetic electron transfer remains however unclear and warrants further investigation.
Collapse
Affiliation(s)
- Marc Long
- School of Chemistry, University of Wollongong, NSW 2522, Australia; Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Alexandra Peltekis
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR 7141, Centre National de la Recherche Scientifique (CNRS), Sorbonne université, 75005 Paris, France
| | - Carmen González-Fernández
- Immunobiotechnology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR 7141, Centre National de la Recherche Scientifique (CNRS), Sorbonne université, 75005 Paris, France.
| |
Collapse
|
5
|
Binzer SB, Varga E, Andersen AJC, Svenssen DK, de Medeiros LS, Rasmussen SA, Larsen TO, Hansen PJ. Karmitoxin production by Karlodinium armiger and the effects of K. armiger and karmitoxin towards fish. HARMFUL ALGAE 2020; 99:101905. [PMID: 33218431 DOI: 10.1016/j.hal.2020.101905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The dinoflagellate Karlodinium armiger has a huge impact on wild and caged fish during blooms in coastal waters. Recently, a new toxin, karmitoxin, was chemically characterized from K. armiger and a quantification method was established, thereby allowing investigations of the fish killing mechanism. K. armiger is not able to grow in standard growth media that are based on nitrate as a nitrogen source, and successful cultures of this species have only been achieved in mixotrophic cultures after addition of a prey source. Here we show that addition of ammonium (up to 50 µM) to the growth media is a good alternative, as K. armiger batch cultures achieve growth rates, which are comparable to growth rates reached in mixotrophic cultures. Karmitoxin production (1.9 and 2.9 pg cell-1 d-1) and cellular karmitoxin content (8.72 ± 0.25 pg cell-1 and 7.14 ± 0.29 pg cell-1) were in the same range, though significantly different, in prey-fed cultures and monocultures supplied with ammonium, respectively. Net production of karmitoxin stopped when the K. armiger cultures reached stationary growth phase, indicating no accumulation of karmitoxin in cells or growth media. Toxicity tests towards sheepshead minnow fish larvae indicated rapid death of the fish larvae when exposed to high K. armiger cell concentrations (LT50 of 2.06 h at 44.9 × 103 cells mL-1 cultivated with ammonium). Purified toxins caused the same physical damage to fish larvae as living K. armiger cultures. An exposure of purified karmitoxin to fish larvae and rainbow trout gill cells indicated that the fish larvae were about three times less sensitive than gill cells. When comparing the effect of purified toxins with the effect of whole K. armiger cultures, twice the toxin concentration of the purified toxins was needed to cause the same effect. Although a loss of karmitoxin of twenty percent was observed during the incubation, this could not explain the apparent discrepancy. Other factors, like a direct effect of the K. armiger cells on the fish larvae or other, yet unknown toxins may influence the effect of whole cell cultures. To study the effects of released karmitoxin, fish larvae were exposed to a K. armiger culture that was treated with HP-20 resin, which adsorbs extracellular karmitoxin. The 24 h HP-20 treatment resulted in a K. armiger culture that had 37% less total karmitoxin, without a reduction in cell concentration, and a reduced toxic effect was observed in the HP-20 treated culture, as compared to non-treated controls. Fish larvae that were exposed to HP-20 treated culture were immobilized, but survived during the 12 h exposure, whereas the exposure to non-treated culture led to high mortality of the fish larvae. Direct observations under the microscope revealed no evidence of micropredation of K. armiger on the fish larvae during any of the exposures. Thus, the results presented here, indicate that released karmitoxin is the main cause for fish kills by K. armiger. Finally, we found that juvenile rainbow trout were six times more sensitive than fish larvae towards K. armiger, indicating that juvenile fish are more sensitive to K. armiger in bloom situations than early larval stages.
Collapse
Affiliation(s)
- Sofie Bjørnholt Binzer
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Elisabeth Varga
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Aaron John Christian Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark; National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Daniel Killerup Svenssen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Lívia Soman de Medeiros
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Silas Anselm Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| |
Collapse
|
6
|
Friedrich RM, Friestad GK. Inspirations from tetrafibricin and related polyketides: new methods and strategies for 1,5-polyol synthesis. Nat Prod Rep 2020; 37:1229-1261. [PMID: 32412021 DOI: 10.1039/c9np00070d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2019 Selective synthesis with control of remote stereogenic centers has long been a challenge in organic chemistry. In recent years the interest in this topic has been energized by isolation and synthetic studies of tetrafibricin and other natural products containing 1,5-polyols, such as amphidinol 3, marinomycins, and caylobolide. Here we discuss recent developments in 1,5-polyol synthesis, including an overview of selected bioactive natural products in this class and examples of new synthetic methodologies and strategies dedicated to remote stereocontrol in these structures. To illustrate in greater depth, we review several instructive examples of how these innovations have been applied in synthetic studies on tetrafibricin.
Collapse
Affiliation(s)
- Ryan M Friedrich
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Gregory K Friestad
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
7
|
Martínez KA, Lauritano C, Druka D, Romano G, Grohmann T, Jaspars M, Martín J, Díaz C, Cautain B, de la Cruz M, Ianora A, Reyes F. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Mar Drugs 2019; 17:md17070385. [PMID: 31252576 PMCID: PMC6669446 DOI: 10.3390/md17070385] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the unique biodiversity and the physical-chemical properties of their environment, marine microorganisms have evolved defense and signaling compounds that often have no equivalent in terrestrial habitats. The aim of this study was to screen extracts of the dinoflagellate Amphidinium carterae for possible bioactivities (i.e., anticancer, anti-inflammatory, anti-diabetes, antibacterial and antifungal properties) and identify bioactive compounds. Anticancer activity was evaluated on human lung adenocarcinoma (A549), human skin melanoma (A2058), human hepatocellular carcinoma (HepG2), human breast adenocarcinoma (MCF7) and human pancreas carcinoma (MiaPaca-2) cell lines. Antimicrobial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus MRSA and MSSA), Gram-negative bacteria (i.e., Escherichia coli and Klebsiella pneumoniae), Mycobacterium tuberculosis and the fungus Aspergillus fumigatus. The results indicated moderate biological activities against all the cancer cells lines and microorganisms tested. Bioassay-guided fractionation assisted by HRMS analysis allowed the detection of one new and two known amphidinols that are potentially responsible for the antifungal and cytotoxic activities observed. Further isolation, purification and structural elucidation led to a new amphidinol, named amphidinol 22. The planar structure of the new compound was determined by analysis of its HRMS and 1D and 2D NMR spectra. Its biological activity was evaluated, and it displayed both anticancer and antifungal activities.
Collapse
Affiliation(s)
- Kevin A Martínez
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Dana Druka
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Teresa Grohmann
- The Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain
| |
Collapse
|
8
|
Satake M, Cornelio K, Hanashima S, Malabed R, Murata M, Matsumori N, Zhang H, Hayashi F, Mori S, Kim JS, Kim CH, Lee JS. Structures of the Largest Amphidinol Homologues from the Dinoflagellate Amphidinium carterae and Structure-Activity Relationships. JOURNAL OF NATURAL PRODUCTS 2017; 80:2883-2888. [PMID: 29120640 DOI: 10.1021/acs.jnatprod.7b00345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphidinols are polyketide metabolites produced by marine dinoflagellates and are chiefly composed of a long linear chain with polyol groups and polyolefins. Two new homologues, amphidinols 20 (AM20, 1) and 21 (AM21, 2), were isolated from Amphidinium carterae collected in Korea. Their structures were elucidated by detailed NMR analyses as amphidinol 6-type compounds with remarkably long polyol chains. Amphidinol 21 (2) has the longest linear structure among the amphidinol homologues reported so far. The congeners, particularly amphidinol 21 (2), showed weaker activity in hemolysis and antifungal assays compared to known amphidinols.
Collapse
Affiliation(s)
- Masayuki Satake
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kimberly Cornelio
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO Lipid Active Structure Project , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Raymond Malabed
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO Lipid Active Structure Project , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Huiping Zhang
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Fumiaki Hayashi
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , Sikadai, Seika-cho, Soraku-gun, Kyoto 619-0284 Japan
| | - Jong Souk Kim
- Department of Marine Bio-materials & Aquaculture, Pukyong National University , Busan 608-737, Korea
| | - Chang-Hoon Kim
- Department of Marine Bio-materials & Aquaculture, Pukyong National University , Busan 608-737, Korea
| | - Jong-Soo Lee
- Department of Seafood and Aquaculture Science, College of Marine Science, Gyeongsang National University , Tongyeong, Kyungnam 650-160, Korea
| |
Collapse
|
9
|
Rasmussen SA, Andersen AJC, Andersen NG, Nielsen KF, Hansen PJ, Larsen TO. Chemical Diversity, Origin, and Analysis of Phycotoxins. JOURNAL OF NATURAL PRODUCTS 2016; 79:662-673. [PMID: 26901085 DOI: 10.1021/acs.jnatprod.5b01066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized.
Collapse
Affiliation(s)
- Silas Anselm Rasmussen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| | | | - Nikolaj Gedsted Andersen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, Helsingør, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, Helsingør, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical‐Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amanda L. Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA)
| |
Collapse
|
11
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical-Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015; 54:15705-10. [PMID: 26568046 DOI: 10.1002/anie.201507418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/22/2015] [Indexed: 12/13/2022]
Abstract
After publication of karlotoxin 2 (KmTx2; 1), the harmful algal bloom dinoflagellate Karlodinium sp. was collected and scrutinized to identify additional biologically active complex polyketides. The structure of 1 was validated and revised at C49 using computational NMR tools including J-based configurational analysis and chemical-shift calculations. The characterization of two new compounds [KmTx8 (2) and KmTx9 (3)] was achieved through overlaid 2D HSQC NMR techniques, while the relative configurations were determined by comparison to 1 and computational chemical-shift calculations. The detailed evaluation of 2 using the NCI-60 cell lines, NMR binding studies, and an assessment of the literature supports a mode of action (MoA) for targeting cancer-cell membranes, especially of cytostatic tumors. This MoA is uniquely different from that of current agents employed in the control of cancers for which 2 shows sensitivity.
Collapse
Affiliation(s)
- Amanda L Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA). , .,Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA). ,
| |
Collapse
|
12
|
Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A. Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon 2011; 58:247-58. [PMID: 21741395 DOI: 10.1016/j.toxicon.2011.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 12/30/2022]
Abstract
Certain allelochemicals of the marine dinoflagellate Alexandrium tamarense cause lysis of a broad spectrum of target protist cells but the lytic mechanism is poorly defined. We first hypothesized that membrane sterols serve as molecular targets of these lytic compounds, and that differences in sterol composition among donor and target cells may cause insensitivity of Alexandrium and sensitivity of targets to lytic compounds. We investigated Ca(2+) influx after application of lytic fractions to a model cell line PC12 derived from a pheochromocytoma of the rat adrenal medulla to establish how the lytic compounds affect ion flux associated with lysis of target membranes. The lytic compounds increased permeability of the cell membrane for Ca(2+) ions even during blockade of Ca(2+) channels with cadmium. Results of a liposome assay suggested that the lytic compounds did not lyse such target membranes non-specifically by means of detergent-like activity. Analysis of sterol composition of isolates of A. tamarense and of five target protistan species showed that both lytic and non-lytic A. tamarense strains contain cholesterol and dinosterol as major sterols, whereas none of the other tested species contain dinosterol. Adding sterols and phosphatidylcholine to a lysis bioassay with the cryptophyte Rhodomonas salina for evaluation of competitive binding indicated that the lytic compounds possessed apparent high affinity for free sterols and phosphatidylcholine. Lysis of protistan target cells was dose-dependently reduced by adding various sterols or phosphatidylcholine. For three tested sterols, the lytic compounds showed highest affinity towards cholesterol followed by ergosterol and brassicasterol. Cholesterol comprised a higher percentage of total sterols in plasma membrane fractions of A. tamarense than in corresponding whole cell fractions. We conclude therefore that although the molecular targets of the lytic compounds are likely to involve sterol components of membranes, A. tamarense must have a complex self-protective mechanism that still needs to be addressed.
Collapse
Affiliation(s)
- Haiyan Ma
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Kumar A, Ali M, Pandey BN, Hassan PA, Mishra KP. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie 2010; 92:869-79. [DOI: 10.1016/j.biochi.2010.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
14
|
Meng Y, Van Wagoner RM, Misner I, Tomas C, Wright JLC. Structure and biosynthesis of amphidinol 17, a hemolytic compound from Amphidinium carterae. JOURNAL OF NATURAL PRODUCTS 2010; 73:409-415. [PMID: 20108948 DOI: 10.1021/np900616q] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amphidinol 17 (AM17; 1), a novel amphidinol, has been isolated from a Bahamas strain of Amphidinium carterae. This new congener contains the signature hairpin region and a Delta(6) polyene arm, whereas the polyol arm is distinct from those of other amphidinols. The pattern of acetate incorporation in 1 was directly determined by feeding a single labeled substrate, [2-(13)C]acetate. While the highly conserved regions within the amphidinol family of AM17 have exhibited identical occurrences of cleaved acetates to other amphidinols for which the biosynthesis has been explored, the polyol arm for AM17 displays a higher degree of nascent chain processing that shows similarities to amphidinolide biosynthesis. AM17 exhibited an EC(50) of 4.9 microM in a hemolytic assay using human red blood cells but displayed no detectable antifungal activity.
Collapse
Affiliation(s)
- Yanhui Meng
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28409, USA
| | | | | | | | | |
Collapse
|
15
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|