1
|
Suárez-Barrera MO, Herrera-Pineda DF, Rondón-Villarreal P, Pinzón-Reyes EH, Ochoa R, Visser L, Rueda-Forero NJ. Toxic Determination of Cry11 Mutated Proteins Obtained Using Rational Design and Its Computational Analysis. Int J Mol Sci 2023; 24:9079. [PMID: 37240424 PMCID: PMC10219489 DOI: 10.3390/ijms24109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cry11 proteins are toxic to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. Cry11Aa and Cry11Bb are protoxins, which when activated present their active-toxin form in two fragments between 30 and 35 kDa respectively. Previous studies conducted with Cry11Aa and Cry11Bb genes using DNA shuffling generated variant 8, which presented a deletion in the first 73 amino acids and one at position 572 and 9 substitutions including L553F and L556W. In this study, variant 8 mutants were constructed using site-directed mutagenesis, resulting in conversion of phenylalanine (F) and tryptophan (W) to leucine (L) at positions 553 and 556, respectively, producing the mutants 8F553L, 8W556L, and 8F553L/8W556L. Additionally, two mutants, A92D and C157R, derived from Cry11Bb were also generated. The proteins were expressed in the non-crystal strain BMB171 of Bacillus thuringiensis and subjected to median-lethal concentration (LC50) tests on first-instar larvae of A. aegypti. LC50 analysis showed that the 8F553L, 8W556L, 8F553L/8W556L, and C157R variants lost their toxic activity (>500 ng·mL-1), whereas the A92D protein presented a loss of toxicity of 11.4 times that of Cry11Bb. Cytotoxicity assays performed using variant 8, 8W556L and the controls Cry11Aa, Cry11Bb, and Cry-negative BMB171 on the colorectal cancer cell line SW480 reported 30-50% of cellular viability except for BMB171. Molecular dynamic simulations performed to identify whether the mutations at positions 553 and 556 were related to the stability and rigidity of the functional tertiary structure (domain III) of the Cry11Aa protein and variant 8 showed the importance of these mutations in specific regions for the toxic activity of Cry11 against A. aegypti. This generates pertinent knowledge for the design of Cry11 proteins and their biotechnological applications in vector-borne disease control and cancer cell lines.
Collapse
Affiliation(s)
- Miguel O. Suárez-Barrera
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia; (M.O.S.-B.); (D.F.H.-P.); (P.R.-V.); (E.H.P.-R.)
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exacts Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Diego F. Herrera-Pineda
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia; (M.O.S.-B.); (D.F.H.-P.); (P.R.-V.); (E.H.P.-R.)
| | - Paola Rondón-Villarreal
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia; (M.O.S.-B.); (D.F.H.-P.); (P.R.-V.); (E.H.P.-R.)
| | - Efraín Hernando Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia; (M.O.S.-B.); (D.F.H.-P.); (P.R.-V.); (E.H.P.-R.)
- Centro de Bioinformática, Simulación y Modelado (CBSM), School of Bioinformatic, Universidad de Talca, Talca 3465548, Chile
| | - Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin 050010, Colombia;
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9701 Groningen, The Netherlands;
| | - Nohora Juliana Rueda-Forero
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia; (M.O.S.-B.); (D.F.H.-P.); (P.R.-V.); (E.H.P.-R.)
| |
Collapse
|
2
|
Rendon-Marin S, Quintero-Gil C, Lemeshko VV, Orduz S. Cytolytic activity of peptides derived from the Cry11Bb insecticidal toxin of B. thuringiensis subsp. medellin. Arch Biochem Biophys 2021; 704:108891. [PMID: 33901485 DOI: 10.1016/j.abb.2021.108891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
A few Bacillus thuringiensis Cry proteins, known as parasporins, have demonstrated cell proliferation inhibition of human cancer cells in vitro after protease activation. In this work, eight peptides derived from the Cry11Bb protoxin produced by B. thuringiensis subsp. medellin were selected and evaluated to investigate their membrane permeabilization and cytolytic activities, using red blood cells and cancer cell lines A549, MCF-7 and Caco-2, respectively. The most active peptides permeabilized red blood cells in a membrane potential-dependent manner. Half maximal inhibitory concentration in cancer cells was in the range 0.78-7.63 μM. At the same time, at peptides concentration of 25 μM, the hemolysis percentage varied in the range of 4.6-32.4%. The peptides BTM-P1 and BTM-P4 in D form had the lowest IC50 values on the MCF-7 cell line and they are considered as the most promising peptides among the evaluated. Fluorescence microscopy using AnnexinV-FLUOS staining indicates that the possible cause of MCF-7 cell death by peptide BTM-P1, is apoptosis. Real time PCR analysis showed an increased transcription of p53 in MCF-7 cells, thus confirming the probable pro-apoptotic effect of the peptide BTM-P1. In general, this study suggests that the cytolytic activity of the polycationic peptides derived from the Cry11Bb protoxin could be mediated by a pro-apoptotic mechanism that might include potential-dependent membrane permeabilization. Further studies might be accomplished to establish whether the peptides are cytolytic to other cancer cell lines and to solid tumors.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Escuela de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Carrera 65 No. 59A - 110, Medellín, 050034, Colombia
| | - Carolina Quintero-Gil
- Escuela de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Carrera 65 No. 59A - 110, Medellín, 050034, Colombia
| | - Victor V Lemeshko
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Carrera 65 No. 59A - 110, Medellín, 050034, Colombia
| | - Sergio Orduz
- Escuela de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Carrera 65 No. 59A - 110, Medellín, 050034, Colombia.
| |
Collapse
|
3
|
Lemeshko VV. Competitive interactions of amphipathic polycationic peptides and cationic fluorescent probes with lipid membrane: Experimental approaches and computational model. Arch Biochem Biophys 2014; 545:167-78. [DOI: 10.1016/j.abb.2014.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
|
4
|
Abstract
Many electrical properties of insect larval guts have been studied, but their importance for toxicity of the Cry-type toxins has never been reported in the literature. In the present work, we observed potential-dependent permeabilization of plasma membrane by several polycationic peptides derived from the Cry11Bb protoxin. The peptide BTM-P1d, all D-type amino acid analogue of the earlier reported peptide BTM-P1, demonstrated high membrane-permeabilizing activity in experiments with isolated rat liver mitochondria, RBC (red blood cells) and mitochondria in homogenates of Aedes aegypti larval guts. Two larger peptides, BTM-P2 and BTM-P3, as well as the Cry11Bb protoxin treated with the protease extract of mosquito larval guts showed similar effects. Only protease-resistant BTM-P1d, in comparison with other peptides, displayed A. aegypti larval toxicity. Taking into account the potential-dependent mechanism of membrane permeabilization by studied fragments of the Cry11Bb protoxin and the literature data related to the distribution of membrane and transepithelial potentials in the A. aegypti larval midgut, we suggest an electrical hypothesis of toxicity of the Cry toxins for mosquito larvae. According to this hypothesis, the electrical field distribution is one of the factors determining the midgut region most susceptible for insertion of activated toxins into the plasma membrane to form pores. In addition, potential-dependent penetration of short active toxin fragments into the epithelial cells could induce permeabilization of mitochondria and subsequent apoptosis or necrosis.
Collapse
|
5
|
Lemeshko VV. Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1047-56. [PMID: 23262194 DOI: 10.1016/j.bbamem.2012.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/15/2022]
Abstract
New polycationic peptides were designed on the basis of 16-mer and 14-mer fragments of the peptide BTM-P1, derived from the Cry11Bb protoxin. The peptides caused mitochondrial, but not red blood cell membrane permeabilization. Conjugation of the cell penetrating hepta-arginine vector to their N- or C-termini through two glycine residues resulted in more active peptides, which also permeabilized the red blood cells with a relatively high plasma membrane potential generated in the presence of valinomycin. The efficiency of the peptides was remarkably higher in the lower ionic strength media. The capability of the plasma membrane permeabilization of the normal red blood cells by the designed conjugated peptides and by known anticancer peptide R7-KLA was also strongly potentiated by the external electrical pulses applied to the cell suspension. These results open the new avenues of the local destruction of solid tumors using the combined "peptide--electrical pulses" synergistic treatment. The designed peptides were active against the human leukemia Jurkat cells but not against the normal wild type CHO cells.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia.
| |
Collapse
|
6
|
Lemeshko VV. Permeabilization of mitochondria and red blood cells by polycationic peptides BTM-P1 and retro-BTM-P1. Peptides 2011; 32:2010-20. [PMID: 21907745 DOI: 10.1016/j.peptides.2011.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/27/2011] [Accepted: 08/27/2011] [Indexed: 11/16/2022]
Abstract
Mitochondrial and plasma membrane permeabilization by polycationic peptides BTM-P1 and retro-BTM-P1 were studied. BTM-P1 was more active than its retro-analog. In the sucrose medium, the capacity of BTM-P1 to permeabilize mitochondria was lower than in salt media. In contrast, retro-BTM-P1 showed the lowest activity in the KCl medium. The efficacy of both peptides to permeabilize red blood cells was higher in the sucrose medium and depended on the nature of salt in high ionic strength media. BTM-P1, but not retro-BTM-P1, induced biphasic change in light dispersion of red blood cells with artificially generated high transmembrane potential: the initial phase of fast cell shrinkage preceded the subsequent phase of cell swelling. The shrunken red blood cells demonstrated increased sensitivity to BTM-P1 that might be explained by the cell suicide mechanism via phosphatidylserine exposure at the cell surface. As a working hypothesis, we assume that some peptide topology characteristics, such as the orientation and values of the total and local electrical dipole moments, interacting with the membrane dipole potential, as well as the asymmetric distribution of polar and non-polar side chains are important factors affecting the membrane-permeabilizing activity of polycationic peptides.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia.
| |
Collapse
|
7
|
Arias M, Quijano JC, Haridas V, Gutterman JU, Lemeshko VV. Red blood cell permeabilization by hypotonic treatments, saponin, and anticancer avicins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1189-96. [PMID: 20346345 DOI: 10.1016/j.bbamem.2010.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/09/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Plasma membrane permeabilization by saponin and anticancer avicins was studied using light dispersion measurements, since high correlation between light dispersion changes and hemolysis has been demonstrated. Nevertheless, we observed that rat red blood cell swelling in moderately hypotonic media was accompanied by up to 20% decrease of light dispersion, when hemolysis was not yet detectable. Avicin G and avicin D were significantly more efficient than saponin in inducing cytotoxicity in PC3 human prostate cancer cells. We found that the preincubation of avicins with the plasma membrane, but not with the cytosolic fraction of previously lysed red blood cells, completely protected fresh cells against permeabilization. The data suggest that the plasma membrane can tightly bind the avicins, but not the saponin. Using the "osmotic protection" method with 100mOsm PEGs of increasing molecular weight in isotonic media, the size of the pores generated by avicin G and avicin D in the plasma membrane was estimated to be higher than the hydrodynamic radius of PEG-8000. The obtained results indicate that the anticancer activity of avicin G and avicin D could be related, at least partially, to their high ability to permeabilize biological membranes. These data might represent interest for possible applications of these anticancer drugs in vivo.
Collapse
Affiliation(s)
- Mauricio Arias
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Colombia
| | | | | | | | | |
Collapse
|
8
|
Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem Phys Lipids 2010; 163:64-73. [DOI: 10.1016/j.chemphyslip.2009.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/24/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022]
|
9
|
Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides. Arch Biochem Biophys 2010; 493:213-20. [DOI: 10.1016/j.abb.2009.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
|