1
|
Yamaguchi R, Kanie Y, Kazamaki T, Kanie O, Shimizu Y. Cellular uptake of liposome consisting mainly of glucocerebroside from the starfish Asterias amurensis into Caco-2 cells. Carbohydr Res 2023; 532:108921. [PMID: 37562111 DOI: 10.1016/j.carres.2023.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Glucocerebroside (GlcCer) is a group of compounds consisting of β-linked glucose and ceramide with various chain lengths, some of which possess anti-tumor activity and improve skin barrier function for atopic patients when administered orally. The amphiphilic GlcCer molecules are generally easy to aggregate in aqueous solution and result in low absorption in the gut, which can be improved by forming a liposome. With a recognition that a relatively large amount of GlcCer is contained in the starfish and is being discarded, we prepared a liposome consisting mainly of GlcCer (over 95%) with 100 nm in diameter. The adsorption efficiency of the liposome into cultured Caco-2 cells was investigated by live-cell imaging using fluorescently labeled liposomes. We found an immediate internalization of GlcCer-liposome on exposure without significant accumulation on the plasma membrane. The membrane fluidity was transiently affected as evidenced by fluorescence recovery after photobleaching (FRAP) experiments without no significant cellular damage, which indicates a liposome with high content of GlcCer might be useful as the carrier of dietary and/or drug molecules.
Collapse
Affiliation(s)
- Ryosuke Yamaguchi
- Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yoshimi Kanie
- Research Promotion Division, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Takashi Kazamaki
- Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Osamu Kanie
- Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan; Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan; Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Yoshitaka Shimizu
- Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan; Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| |
Collapse
|
2
|
González-Ramírez EJ, Goñi FM, Alonso A. Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids. Sci Rep 2019; 9:13326. [PMID: 31527655 PMCID: PMC6746848 DOI: 10.1038/s41598-019-50020-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The properties of bilayers composed of pure brain cerebroside (bCrb) or of binary mixtures of bCrb with brain ceramide, cholesterol, egg phosphatidylcholine or brain sphingomyelin have been studied using a combination of physical techniques. Pure bCrb exhibits a rather narrow gel-fluid transition centred at ≈65 °C, with a half-width at half-height T1/2 ≈ 3 °C. bCrb mixes well with both fluid and gel phospholipids and ceramide, and it rigidifies bilayers of egg phosphatidylcholine or brain sphingomyelin when the latter are in the fluid state. Cholesterol markedly widens the bCrb gel-fluid transition, while decreasing the associated transition enthalpy, in the manner of cholesterol mixtures with saturated phosphatidylcholines, or sphingomyelins. Laurdan and DPH fluorescence indicate the formation of fluid ordered phases in the bCrb:cholesterol mixtures. Macroscopic phase separation of more and less fluid domains is observed in giant unilamellar vesicles consisting of bCrb:egg phosphatidylcholine or bCrb:sphingomyelin. Crb capacity to induce bilayer permeabilization or transbilayer (flip-flop) lipid motion is much lower than those of ceramides. The mixtures explored here contained mostly bCrb concentrations >50 mol%, mimicking the situation of cell membranes in Gaucher's disease, or of the Crb-enriched microdomains proposed to exist in healthy cell plasma membranes.
Collapse
Affiliation(s)
- Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain.
| |
Collapse
|
3
|
Intra- and intercellular trafficking in sphingolipid metabolism in myelination. Adv Biol Regul 2018; 71:97-103. [PMID: 30497846 DOI: 10.1016/j.jbior.2018.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
The myelin sheath, produced by oligodendrocytes in the central nervous system, provides essential electrical insulation to neurons, but also is critical for viability of neurons. Both the protein and lipid composition of this fascinating membrane is unique. Here the focus is on the sphingolipids that are highly abundant in myelin and, in particular, how they are produced. This review discusses how sphingolipid metabolism is regulated. In particular the subcellular localization of lipid metabolic enzymes is discussed and how inter-organelle transport can affect the metabolic routes that sphingolipid precursors take. Understanding the regulation of sphingolipid metabolism in formation of the myelin membrane will have a significant impact on strategies to treat demyelinating diseases.
Collapse
|
4
|
Mangiarotti A, Wilke N. Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers. SOFT MATTER 2017; 13:686-694. [PMID: 28009904 DOI: 10.1039/c6sm01957a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For decades, it has been assumed that electrostatic long-range (micron distances) repulsions in lipid bilayers are negligible due to screening from the aqueous milieu. This concept, mostly derived from theoretical calculations, is broadly accepted in the biophysical community. Here we present experimental evidence showing that domain-domain electrostatic repulsions in charged and also in neutral lipid bilayers regulate the diffusion, in-plane structuring and merging of lipid domains in the micron range. All the experiments were performed on both, lipid monolayers and bilayers, and the remarkable similarity in the results found in bilayers compared to monolayers led us to propose that inter-domain repulsions occur mainly within the plane of the membrane. Finally, our results indicate that electrostatic interactions between the species inserted in a cell membrane are not negligible, not only at nanometric but also at larger distances, suggesting another manner for regulating the membrane properties.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
5
|
Gumí-Audenis B, Costa L, Carlá F, Comin F, Sanz F, Giannotti MI. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids. MEMBRANES 2016; 6:E58. [PMID: 27999368 PMCID: PMC5192414 DOI: 10.3390/membranes6040058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Luca Costa
- Structure and Dynamics of Nucleoproteic and Membrane Assemblies, Centre de Biochimie Structurale (CBS), Montpellier 34090, France.
| | - Francesco Carlá
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fabio Comin
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fausto Sanz
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Marina I Giannotti
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| |
Collapse
|
6
|
Alkyl esters of l-ascorbic acid: Stability, surface behaviour and interaction with phospholipid monolayers. J Colloid Interface Sci 2015; 457:232-42. [DOI: 10.1016/j.jcis.2015.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022]
|
7
|
Gumí-Audenis B, Sanz F, Giannotti MI. Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study. SOFT MATTER 2015; 11:5447-5454. [PMID: 26058499 DOI: 10.1039/c5sm01252j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Galactosylceramides (GalCer) are glycosphingolipids bound to a monosaccharide group, responsible for inducing extensive hydrogen bonds that yield their alignment and accumulation in the outer leaflet of the biological membrane together with cholesterol (Chol) in rafts. In this work, the influence of GalCer on the nanomechanical properties of supported lipid bilayers (SLBs) based on DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DLPC (1,2-didodecanoyl-sn-glycero-3-phosphocoline) as model systems was assessed. Phosphatidylcholine (PC):GalCer SLBs were characterized by means of differential scanning calorimetry (DSC) and atomic force microscopy (AFM), in both imaging and force spectroscopy (AFM-FS) modes. Comparing both PC systems, we determined that the behaviour of SLB mixtures is governed by the PC phase-like state at the working temperature. While a phase segregated system is observed for DLPC:GalCer SLBs, GalCer are found to be dissolved in DPPC SLBs for GalCer contents up to 20 mol%. In both systems, the incorporation of GalCer intensifies the nanomechanical properties of SLBs. Interestingly, segregated domains of exceptionally high mechanical stability are formed in DLPC:GalCer SLBs. Finally, the role of 20 mol% Chol in GalCer organization and function in the membranes was assessed. Both PC model systems displayed phase segregation and remarkable nanomechanical stability when GalCer and Chol coexist in SLBs.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona, 08028, Spain.
| | | | | |
Collapse
|
8
|
Olshyk VN, Melsitova IV, Yurkova IL. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes. Chem Phys Lipids 2014; 177:1-7. [DOI: 10.1016/j.chemphyslip.2013.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 12/26/2022]
|
9
|
Small EF, Dan NR, Wrenn SP. Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14364-14372. [PMID: 22974532 DOI: 10.1021/la303183b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We examined the effect of bilayer composition on membrane sensitivity to low-frequency ultrasound (LFUS) in bilayers composed of ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), dipalmitoyl-phosphocholine (DPPC), and cholesterol. The phase diagram of this system does not display macroscopic phase coexistence between liquid phases (although there are suggestions that there is coexistence between a liquid and a solid phase). Samples from across the composition space were exposed to 20 kHz, continuous wave ultrasound, and the response of the bilayer was quantified using steady-state fluorescence spectroscopy to measure the release of a self-quenching dye, calcein, from large unilamellar vesicles. Dynamic light scattering measurements indicate that, in this system, release proceeds primarily by transport through the vesicle bilayer. While vesicle destruction might account, at least in part, for the light scattering trends observed, evidence of destruction was not as obvious as in other lipid systems. Values for bilayer permeability are obtained by fitting release kinetics to a two-film theory mathematical model. The permeability due to LFUS is found to increase with increasing DPPC content, as the bilayer tends toward the solid-ordered phase. Permeability, and thus sensitivity to LFUS, decreases with either POPC or cholesterol mole fractions. In the liquid regime of this system, there is no recorded phase transition; thus cholesterol is the determining factor in release rates. However, the presence of domain boundaries between distinctly differing phases of liquid and solid is found to cause release rates to more than double. The correlation of permeability with phase behavior might prove useful in designing and developing therapies based on ultrasound and membrane interactions.
Collapse
Affiliation(s)
- Eleanor F Small
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
10
|
Hanulová M, Weiss M. Protein sorting and membrane-mediated interactions. Biophys Rev 2012; 4:117-124. [PMID: 28510092 DOI: 10.1007/s12551-012-0069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 11/30/2022] Open
Abstract
Sorting of membrane proteins is of vital importance for living cells. Indeed, roughly one-third of a eukaryotic cell's proteome consists of peripheral and transmembrane proteins. These need to be properly distributed and dynamically maintained at distinct locations in the compartmentalized cell, and one may wonder how proteins determine where, when, and how to travel to reach a specific organelle. While specific binary interactions between proteins have been invoked in explaining the trafficking and sorting processes, a more active role of lipids in this context has become visible in recent years. In particular, membrane-mediated interactions have been suggested to serve as a robust physicochemical mechanism to facilitate protein sorting. Here, we will review some recent insights into these aspects.
Collapse
Affiliation(s)
- Mária Hanulová
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95440, Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95440, Bayreuth, Germany.
| |
Collapse
|
11
|
Kraut R, Bag N, Wohland T. Fluorescence Correlation Methods for Imaging Cellular Behavior of Sphingolipid-Interacting Probes. Methods Cell Biol 2012; 108:395-427. [DOI: 10.1016/b978-0-12-386487-1.00018-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures. Biointerphases 2010; 5:120-30. [DOI: 10.1116/1.3524295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|