1
|
Lee YHG, Cerf NT, Shalaby N, Montes MR, Clarke RJ. Bioinformatic Study of Possible Acute Regulation of Acid Secretion in the Stomach. J Membr Biol 2024; 257:79-89. [PMID: 38436710 PMCID: PMC11006737 DOI: 10.1007/s00232-024-00310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.
Collapse
Affiliation(s)
- Yan Hay Grace Lee
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicole T Cerf
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicholas Shalaby
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mónica R Montes
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Valsecchi WM, Faraj SE, Cerf NT, Fedosova NU, Montes MR. The transported cations impose differences in the thermostability of the gastric H,K-ATPase. A kinetic analysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184006. [PMID: 35868405 DOI: 10.1016/j.bbamem.2022.184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This work analyses the thermostability of a membrane protein, the gastric H,K-ATPase, by means of a detailed kinetic characterization of its inactivation process, which showed to exhibit first-order kinetics. We observed parallel time courses for the decrease of ATPase activity, the decrease of the autophosphorylation capacity and the loss of tertiary structure at 49 °C. Higher temperatures were required to induce a significant change in secondary structure. The correspondence between the kinetics of Trp fluorescence measured at 49 °C and the decrease of the residual activity after heating at that temperature, proves the irreversibility of the inactivation process. Inactivation proceeds at different rates in E1 or E2 conformations. The K+-induced E2 state exhibits a lower inactivation rate; the specific effect is exerted with a K0.5 similar to that found at 25 °C, providing a further inkling that K+ occlusion by the H,K-ATPase is not really favoured. Increasing [H+] from pH 8 to pH 7, which possibly shifts the protein to E1, produces a subtle destabilizing effect on the H,K-ATPase. We performed a prediction of potential intramolecular interactions and found that the differential stability between E1 and E2 may be mainly explained by the higher number of hydrophobic interactions in the α- and β-subunits of E2 conformation.
Collapse
Affiliation(s)
- W M Valsecchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - S E Faraj
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N T Cerf
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N U Fedosova
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M R Montes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Faraj SE, Valsecchi WM, Cerf NT, Fedosova NU, Rossi RC, Montes MR. The interaction of Na +, K +, and phosphate with the gastric H,K-ATPase. Kinetics of E1-E2 conformational changes assessed by eosin fluorescence measurements. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183477. [PMID: 32949561 DOI: 10.1016/j.bbamem.2020.183477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
H,K-ATPase and Na,K-ATPase show the highest degree of sequence similarity among all other members of the P-type ATPases family. To explore their common features in terms of ligand binding, we evaluated conformational transitions due to the binding of Na+, K+ and Pi in the H,K-ATPase, and compared the results with those obtained for the Na,K-ATPase. This work shows that eosin fluorescence time courses provide a reasonably precise method to study the kinetics of the E1-E2 conformational changes in the H,K-ATPase. We found that, although Na+ shifts the equilibrium toward the E1 conformation and seems to compete with H+ in ATPase activity assays, it was neither possible to isolate a Na+-occluded state, nor to reveal an influx of Na+ related to H,K-ATPase activity. The high rate of the E2K → E1 transition found for the H,K-ATPase, which is not compatible with the presence of a K+-occluded form, agrees with the negligible level of occluded Rb+ (used as a K+ congener) found in the absence of added ligands. The use of vanadate and fluorinated metals to induce E2P-like states increased the level of occluded Rb+ and suggests that-during dephosphorylation-the probability of K+ to remain occluded increases from the E2P-ground to the E2P-product state. From kinetic experiments we found an unexpected increase in the values of kobs for E2P formation with [Pi]; consequently, to obey the Albers-Post model, the binding of Pi to the E2 state cannot be a rapid-equilibrium reaction.
Collapse
Affiliation(s)
- S E Faraj
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - W M Valsecchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N T Cerf
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N U Fedosova
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R C Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - M R Montes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Hossain KR, Li X, Zhang T, Paula S, Cornelius F, Clarke RJ. Polarity of the ATP binding site of the Na +,K +-ATPase, gastric H +,K +-ATPase and sarcoplasmic reticulum Ca 2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183138. [PMID: 31790695 DOI: 10.1016/j.bbamem.2019.183138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
Abstract
A fluorescence ratiometric method utilizing the probe eosin Y is presented for estimating the ATP binding site polarity of P-type ATPases in different conformational states. The method has been calibrated by measurements in a series of alcohols and tested using complexation of eosin Y with methyl-β-cyclodextrin. The results obtained with the Na+,K+-, H+,K+- and sarcoplasmic reticulum Ca2+-ATPases indicate that the ATP binding site, to which eosin is known to bind, is significantly more polar in the case of the Na+,K+- and H+,K+-ATPases compared to the Ca2+-ATPase. This result was found to be consistent with docking calculations of eosin with the E2 conformational state of the Na+,K+-ATPase and the Ca2+-ATPase. Fluorescence experiments showed that eosin binds significantly more strongly to the E1 conformation of the Na+,K+-ATPase than the E2 conformation, but in the case of the Ca2+-ATPase both fluorescence experiments and docking calculations showed no significant difference in binding affinity between the two conformations. This result could be due to the fact that, in contrast to the Na+,K+- and H+,K+-ATPases, the E2-E1 transition of the Ca2+-ATPase does not involve the movement of a lysine-rich N-terminal tail which may affect the overall enzyme conformation. Consistent with this hypothesis, the eosin affinity of the E1 conformation of the Na+,K+-ATPase was significantly reduced after N-terminal truncation. It is suggested that changes in conformational entropy of the N-terminal tail of the Na+, K+- and the H+,K+-ATPases during the E2-E1 transition could affect the thermodynamic stability of the E1 conformation and hence its ATP binding affinity.
Collapse
Affiliation(s)
- K R Hossain
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - X Li
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - T Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - S Paula
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
6
|
Abstract
Gastric H(+),K(+)-ATPase is an ATP-driven proton pump responsible for the acid secretion. Here, we describe the procedure for the isolation of H(+),K(+)-ATPase-enriched membrane vesicle fractions by Ficoll/sucrose density gradient centrifugation. Further purification by SDS treatment of membrane fractions is also introduced. These procedures allow us to obtain purified protein preparations in a quantity of several tens of milligrams, with the specific activity of ~480 μmol/mg/h. High purity and stability of H(+),K(+)-ATPase in the membrane preparation enable us to evaluate its detailed biochemical properties, and also to obtain 2D crystals for structural analysis.
Collapse
|
7
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
8
|
Cryo-EM structure of gastric H+,K+-ATPase with a single occupied cation-binding site. Proc Natl Acad Sci U S A 2012; 109:18401-6. [PMID: 23091039 DOI: 10.1073/pnas.1212294109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gastric H(+),K(+)-ATPase is responsible for gastric acid secretion. ATP-driven H(+) uptake into the stomach is efficiently accomplished by the exchange of an equal amount of K(+), resulting in a luminal pH close to 1. Because of the limited free energy available for ATP hydrolysis, the stoichiometry of transported cations is thought to vary from 2H(+)/2K(+) to 1H(+)/1K(+) per hydrolysis of one ATP molecule as the luminal pH decreases, although direct evidence for this hypothesis has remained elusive. Here, we show, using the phosphate analog aluminum fluoride (AlF) and a K(+) congener (Rb(+)), the 8-Å resolution structure of H(+),K(+)-ATPase in the transition state of dephosphorylation, (Rb(+))E2~AlF, which is distinct from the preceding Rb(+)-free E2P state. A strong density located in the transmembrane cation-binding site of (Rb(+))E2~AlF highly likely represents a single bound Rb(+) ion, which is clearly different from the Rb(+)-free E2AlF or K(+)-bound (K(+))E2~AlF structures. Measurement of radioactive (86)Rb(+) binding suggests that the binding stoichiometry varies depending on the pH, and approximately half of the amount of Rb(+) is bound under acidic crystallization conditions compared with at a neutral pH. These data represent structural and biochemical evidence for the 1H(+)/1K(+)/1ATP transport mode of H(+),K(+)-ATPase, which is a prerequisite for generation of the 10(6)-fold proton gradient in terms of thermodynamics. Together with the released E2P-stabilizing interaction between the β subunit's N terminus and the P domain observed in the (Rb(+))E2~AlF structure, we propose a refined vectorial transport model of H(+),K(+)-ATPase, which must prevail against the highly acidic state of the gastric lumen.
Collapse
|
9
|
Montes MR, Monti JLE, Rossi RC. E2→E1 transition and Rb(+) release induced by Na(+) in the Na(+)/K(+)-ATPase. Vanadate as a tool to investigate the interaction between Rb(+) and E2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2087-93. [PMID: 22521366 DOI: 10.1016/j.bbamem.2012.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/13/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb(+) deocclusion stimulated by Na(+) in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb(+) and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb(+) deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb(+)]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb(+)-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na(+)-stimulated Rb(+) deocclusion would require the release of at least one Rb(+) ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb(+) in equilibrium conditions. Results show that, while Mg(2+) decreases the affinity for Rb(+), addition of vanadate offsets this effect, increasing the affinity for Rb(+). In transient experiments, we investigated the exchange of Rb(+) between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na(+) without significantly affecting the rate of Rb(+) deocclusion. On the other hand, we found the first evidence of a very low rate of Rb(+) occlusion in the enzyme-vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb(+).
Collapse
Affiliation(s)
- Mónica R Montes
- Departamento de Quimica Biologica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
10
|
Ferreira-Gomes MS, González-Lebrero RM, de la Fuente MC, Strehler EE, Rossi RC, Rossi JPFC. Calcium occlusion in plasma membrane Ca2+-ATPase. J Biol Chem 2011; 286:32018-25. [PMID: 21795697 DOI: 10.1074/jbc.m111.266650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium. Measurements of retained calcium as a function of the Ca(2+) concentration in steady state showed a hyperbolic dependence with an apparent dissociation constant of 12 ± 2.2 μM, which agrees with the value found through measurements of PMCA activity in the absence of calmodulin. When enzyme phosphorylation and the retained calcium were studied as a function of time in the presence of La(III) (inducing accumulation of phosphoenzyme in the E(1)P state), we obtained apparent rate constants not significantly different from each other. Quantification of EP and retained calcium in steady state yield a stoichiometry of one mole of occluded calcium per mole of phosphoenzyme. These results demonstrate for the first time that one calcium ion becomes occluded in the E(1)P-phosphorylated intermediate of the PMCA.
Collapse
Affiliation(s)
- Mariela S Ferreira-Gomes
- Instituto de Química y Fisicoquímica Biologicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|