1
|
Ramos-Viana V, Møller-Hansen I, Kempen P, Borodina I. Modulation of the cell wall protein Ecm33p in yeast Saccharomyces cerevisiae improves the production of small metabolites. FEMS Yeast Res 2022; 22:6654878. [PMID: 35922083 PMCID: PMC9440718 DOI: 10.1093/femsyr/foac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or β-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and β-carotene. We observed no change in secretion in any cell wall altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.
Collapse
Affiliation(s)
- Verónica Ramos-Viana
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Zhu J, Jia ZW, Xia CY, Gao XD. The Sur7/PalI family transmembrane protein Tos7 (Yol019w) plays a role in secretion in budding yeast. Fungal Genet Biol 2020; 144:103467. [PMID: 33002606 DOI: 10.1016/j.fgb.2020.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
Abstract
Tos7 (Yol019w) is a Sur7/PalI family transmembrane protein in the budding yeast Saccharomyces cerevisiae. Since the deletion of TOS7 did not affect growth or cell morphology, the cellular roles of Tos7 have not been established previously. Here, we show that high-copy TOS7 expression suppressed the growth defect of the secretion-defective RGA1-C term-overexpressing mutant and sec15-1 mutant. Moreover, Tos7 physically interacted with Boi2 and the Rho GTPase Rho3, two key regulators of exocyst assembly, suggesting that Tos7 plays a role in secretion. We also show that the deletion of TOS7 rendered the cells more sensitive to the cell wall-disrupting agents Congo red and calcofluor white while high-copy TOS7 expression had an opposite effect, suggesting that Tos7 affects cell wall organization. Finally, we show that Tos7 localized to punctate patches on the plasma membrane that were largely co-localized with the plasma membrane microdomains named MCC (membrane compartment of Can1). Together, these results suggest that Tos7 contributes to cell surface-related functions. Tos7 is likely an auxiliary component of MCC/eisosome that specifically interacts with the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen-Yang Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
3
|
Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2. J Biosci Bioeng 2019; 129:165-171. [PMID: 31537451 DOI: 10.1016/j.jbiosc.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Budding yeast Saccharomyces cerevisiae has been widely used for heterologous protein production. However, low protein production titer and secretion levels continue to challenge its practical applications. The yeast cell wall plays important roles in yeast cell growth and environmental responses. Nevertheless, the effects of yeast cell wall proteins on heterologous protein production and secretion remain unclear. CWP2 encodes a mannoprotein that is the major component of the yeast cell wall. So far, studies on its function have been very limited. Here we show that CWP2 disruption improved extracellular cellobiohydrolase activity by 85.9%. A calcofluor white hypersensitivity assay revealed increased sensitivity of the mutant compared to the parental strain, indicating impaired cell wall integrity. However, no changes were observed in normal cell growth or growth stressed by tunicamycin and dithiothreitol, suggesting that the unfolded protein response pathway was not affected by the gene disruption. Comparative transcriptome analysis revealed changes in multiple genes involved in cell wall structure, biosynthesis, and cell wall integrity induced by CWP2 disruption, suggesting a pivotal role of Cwp2p in yeast cell wall organization. Notably, CWP2 disruption also led to elevated transcription of a large number of genes involved in ribosome biogenesis, which indicated that CWP2 is not only in yeast cell wall biosynthesis, but also in protein translation. This work reveals novel insights into the functions of CWP2 and also presents a new strategy to increase heterologous protein production in yeast strains by manipulating cell wall-related proteins.
Collapse
|
4
|
The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci Rep 2018; 8:12064. [PMID: 30104659 PMCID: PMC6089919 DOI: 10.1038/s41598-018-30500-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Mycoparasites, e.g. fungi feeding on other fungi, are prominent within the genus Trichoderma and represent a promising alternative to chemical fungicides for plant disease control. We previously showed that the seven-transmembrane receptor Gpr1 regulates mycelial growth and asexual development and governs mycoparasitism-related processes in Trichoderma atroviride. We now describe the identification of genes being targeted by Gpr1 under mycoparasitic conditions. The identified gene set includes a candidate, sfp2, encoding a protein of the fungal-specific Sur7 superfamily, whose upregulation in T. atroviride upon interaction with a fungal prey is dependent on Gpr1. Sur7 family proteins are typical residents of membrane microdomains such as the membrane compartment of Can1 (MCC)/eisosome in yeast. We found that GFP-labeled Gpr1 and Sfp2 proteins show partly overlapping localization patterns in T. atroviride hyphae, which may point to shared functions and potential interaction during signal perception and endocytosis. Deletion of sfp2 caused heavily altered colony morphology, defects in polarized growth, cell wall integrity and endocytosis, and significantly reduced mycoparasitic activity, whereas sfp2 overexpression enhanced full overgrowth and killing of the prey. Transcriptional activation of a chitinase specific for hyphal growth and network formation and strong downregulation of chitin synthase-encoding genes were observed in Δsfp2. Taken together, these findings imply crucial functions of Sfp2 in hyphal morphogenesis of T. atroviride and its interaction with prey fungi.
Collapse
|
5
|
MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi. J Fungi (Basel) 2017; 3:jof3040061. [PMID: 29371577 PMCID: PMC5753163 DOI: 10.3390/jof3040061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The fungal plasma membrane is critical for cell wall synthesis and other important processes including nutrient uptake, secretion, endocytosis, morphogenesis, and response to stress. To coordinate these diverse functions, the plasma membrane is organized into specialized compartments that vary in size, stability, and composition. One recently identified domain known as the Membrane Compartment of Can1 (MCC)/eisosome is distinctive in that it corresponds to a furrow-like invagination in the plasma membrane. MCC/eisosomes have been shown to be formed by the Bin/Amphiphysin/Rvs (BAR) domain proteins Lsp1 and Pil1 in a range of fungi. MCC/eisosome domains influence multiple cellular functions; but a very pronounced defect in cell wall synthesis has been observed for mutants with defects in MCC/eisosomes in some yeast species. For example, Candida albicans MCC/eisosome mutants display abnormal spatial regulation of cell wall synthesis, including large invaginations and altered chemical composition of the walls. Recent studies indicate that MCC/eisosomes affect cell wall synthesis in part by regulating the levels of the key regulatory lipid phosphatidylinositol 4,5-bisphosphate (PI4,5P2) in the plasma membrane. One general way MCC/eisosomes function is by acting as protected islands in the plasma membrane, since these domains are very stable. They also act as scaffolds to recruit >20 proteins. Genetic studies aimed at defining the function of the MCC/eisosome proteins have identified important roles in resistance to stress, such as resistance to oxidative stress mediated by the flavodoxin-like proteins Pst1, Pst2, Pst3 and Ycp4. Thus, MCC/eisosomes play multiple roles in plasma membrane organization that protect fungal cells from the environment.
Collapse
|
6
|
Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:200. [PMID: 27679668 PMCID: PMC5029107 DOI: 10.1186/s13068-016-0614-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Lignocellulosic biomass continues to be investigated as a viable source for bioethanol production. However, the pretreatment process generates inhibitory compounds that impair the growth and fermentation performance of microorganisms such as Saccharomyces cerevisiae. Pinewood specifically has been shown to be challenging in obtaining industrially relevant ethanol titers. An industrial S. cerevisiae strain was subjected to directed evolution and adaptation in pretreated pine biomass and resultant strains, GHP1 and GHP4, exhibited improved growth and fermentative ability on pretreated pine in the presence of related inhibitory compounds. A comparative transcriptomic approach was applied to identify and characterize differences in phenotypic stability of evolved strains. RESULTS Evolved strains displayed different fermentative capabilities with pretreated pine that appear to be influenced by the addition or absence of 13 inhibitory compounds during pre-culturing. GHP4 performance was consistent independent of culturing conditions, while GHP1 performance was dependent on culturing with inhibitors. Comparative transcriptomics revealed 52 genes potentially associated with stress responses to multiple inhibitors simultaneously. Fluorescence microscopy revealed improved cellular integrity of both strains with mitochondria exhibiting resistance to the damaging effects of inhibitors in contrast to the parent. CONCLUSIONS Multiple potentially novel genetic targets have been discovered for understanding stress tolerance through the characterization of our evolved strains. This study specifically examines the synergistic effects of multiple inhibitors and identified targets will guide future studies in remediating effects of inhibitors and further development of robust yeast strains for multiple industrial applications.
Collapse
Affiliation(s)
| | - Gary M. Hawkins
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Steven W. Gorsich
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| | | |
Collapse
|
7
|
Vaskovicova K, Stradalova V, Efenberk A, Opekarova M, Malinsky J. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: Import of foreign membrane microdomains. Eur J Cell Biol 2015; 94:1-11. [DOI: 10.1016/j.ejcb.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023] Open
|
8
|
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| |
Collapse
|
9
|
Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane. MEMBRANES 2014; 1:394-411. [PMID: 22368779 PMCID: PMC3285718 DOI: 10.3390/membranes1040394] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on the budding yeast Saccharomyces cerevisiae have revealed that fungal plasma membranes are organized into different subdomains. One new domain termed MCC/eisosomes consists of stable punctate patches that are distinct from lipid rafts. The MCC/eisosome domains correspond to furrows in the plasma membrane that are about 300 nm long and 50 nm deep. The MCC portion includes integral membrane proteins, such as the tetraspanners Sur7 and Nce102. The adjacent eisosome includes proteins that are peripherally associated with the membrane, including the BAR domains proteins Pil1 and Lsp1 that are thought to promote membrane curvature. Genetic analysis of the MCC/eisosome components indicates these domains broadly affect overall plasma membrane organization. The mechanisms regulating the formation of MCC/eisosomes in model organisms will be reviewed as well as the role of these plasma membrane domains in fungal pathogenesis and response to antifungal drugs.
Collapse
|
10
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Olivera-Couto A, Aguilar PS. Eisosomes and plasma membrane organization. Mol Genet Genomics 2012; 287:607-20. [DOI: 10.1007/s00438-012-0706-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/29/2012] [Indexed: 12/16/2022]
|
12
|
PalI domain proteins of Saccharomyces cerevisiae and Candida albicans. Microbiol Res 2012; 167:422-32. [DOI: 10.1016/j.micres.2011.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/19/2011] [Accepted: 12/30/2011] [Indexed: 12/23/2022]
|
13
|
Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. mBio 2011; 3:mBio.00254-11. [PMID: 22202230 PMCID: PMC3244266 DOI: 10.1128/mbio.00254-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human fungal pathogen Candida albicans causes lethal systemic infections because of its ability to grow and disseminate in a host. The C. albicans plasma membrane is essential for virulence by acting as a protective barrier and through its key roles in interfacing with the environment, secretion of virulence factors, morphogenesis, and cell wall synthesis. Difficulties in studying hydrophobic membranes have limited the understanding of how plasma membrane organization contributes to its function and to the actions of antifungal drugs. Therefore, the role of the recently discovered plasma membrane subdomains termed the membrane compartment containing Can1 (MCC) was analyzed by assessing the virulence of a sur7Δ mutant. Sur7 is an integral membrane protein component of the MCC that is needed for proper localization of actin, morphogenesis, cell wall synthesis, and responding to cell wall stress. MCC domains are stable 300-nm-sized punctate patches that associate with a complex of cytoplasmic proteins known as an eisosome. Analysis of virulence-related properties of a sur7Δ mutant revealed defects in intraphagosomal growth in macrophages that correlate with increased sensitivity to oxidation and copper. The sur7Δ mutant was also strongly defective in pathogenesis in a mouse model of systemic candidiasis. The mutant cells showed a decreased ability to initiate an infection and greatly diminished invasive growth into kidney tissues. These studies on Sur7 demonstrate that the plasma membrane MCC domains are critical for virulence and represent an important new target for the development of novel therapeutic strategies. Candida albicans, the most common human fungal pathogen, causes lethal systemic infections by growing and disseminating in a host. The plasma membrane plays key roles in enabling C. albicans to grow in vivo, and it is also the target of the most commonly used antifungal drugs. However, plasma membrane organization is poorly understood because of the experimental difficulties in studying hydrophobic components. Interestingly, recent studies have identified a novel type of plasma membrane subdomain in fungi known as the membrane compartment containing Can1 (MCC). Cells lacking the MCC-localized protein Sur7 display broad defects in cellular organization and response to stress in vitro. Consistent with this, C. albicans cells lacking the SUR7 gene were more susceptible to attack by macrophages than cells with the gene and showed greatly reduced virulence in a mouse model of systemic infection. Thus, Sur7 and other MCC components represent novel targets for antifungal therapy.
Collapse
|