1
|
Carder J, Barile B, Shisler KA, Pisani F, Frigeri A, Hipps KW, Nicchia GP, Brozik JA. Thermodynamics and S-Palmitoylation Dependence of Interactions between Human Aquaporin-4 M1 Tetramers in Model Membranes. J Phys Chem B 2024; 128:603-621. [PMID: 38212942 PMCID: PMC10824246 DOI: 10.1021/acs.jpcb.3c04529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Aquaporin-4 (AQP4) is a water channel protein found primarily in the central nervous system (CNS) that helps to regulate water-ion homeostasis. AQP4 exists in two major isoforms: M1 and M23. While both isoforms have a homotetrameric quaternary structure and are functionally identical when transporting water, the M23 isoform forms large protein aggregates known as orthogonal arrays of particles (OAPs). In contrast, the M1 isoform creates a peripheral layer around the outside of these OAPs, suggesting a thermodynamically stable interaction between the two. Structurally, the M1 isoform has an N-terminal tail that is 22 amino acids longer than the M23 isoform and contains two solvent-accessible cysteines available for S-palmitoylation at cysteine-13 (Cys-13) and cysteine-17 (Cys-17) in the amino acid sequence. Earlier work suggests that the palmitoylation of these cysteines might aid in regulating AQP4 assemblies. This work discusses the thermodynamic driving forces for M1 protein-protein interactions and how the palmitoylation state of M1 affects them. Using temperature-dependent single-particle tracking, the standard state free energies, enthalpies, and entropies were measured for these interactions. Furthermore, we present a binding model based on measured thermodynamics and a structural modeling study. The results of this study demonstrate that the M1 isoform will associate with itself according to the following expressions: 2[AQP4-M1]4 ↔ [[AQP4-M1]4]2 when palmitoylated and 3[AQP4-M1]4 ↔ [AQP4-M1]4 + [[AQP4-M1]4]2 ↔ [[AQP4-M1]4]3 when depalmitoylated. This is primarily due to a conformational change induced by adding the palmitic acid groups at Cys-13 and Cys-17 in the N-terminal tails of the homotetramers. In addition, a statistical mechanical model was developed to estimate the Gibbs free energy, enthalpy, and entropy for forming dimers and trimers. These results were in good agreement with experimental values.
Collapse
Affiliation(s)
- Jessica
D. Carder
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
| | - Barbara Barile
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
| | - Krista A. Shisler
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
| | - Francesco Pisani
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
| | - Antonio Frigeri
- Department
of Translational Medicine and Neuroscience, University of Bari Aldo Moro, Bari 70124, Italy
- Dominick
P. Purpura Department of Neuroscience, Albert
Einstein College of Medicine, 840 Kennedy Center, Bronx, New York 10461, United States
| | - K. W. Hipps
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
- Materials
Science & Engineering Program, Washington
State University, Pullman, Washington 99163-2711, United States
| | - Grazia Paola Nicchia
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
- Dominick
P. Purpura Department of Neuroscience, Albert
Einstein College of Medicine, 840 Kennedy Center, Bronx, New York 10461, United States
| | - James A. Brozik
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
- Materials
Science & Engineering Program, Washington
State University, Pullman, Washington 99163-2711, United States
| |
Collapse
|
2
|
Yamamoto E, Akimoto T, Hirano Y, Yasui M, Yasuoka K. 1/ f Fluctuations of amino acids regulate water transportation in aquaporin 1. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022718. [PMID: 25353519 DOI: 10.1103/physreve.89.022718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 06/04/2023]
Abstract
Aquaporins (AQPs), which transport water molecules across cell membranes, are involved in many physiological processes. Recently, it is reported that the water-water interactions within the channel are broken at the aromatic/arginine selectivity filter (ar/R region), which prevents proton transportation [U. K. Eriksson et al., Science 340, 1346 (2013)]. However, the effects of the conformational fluctuations of amino acids on water transportation remain unclear. Using all-atom molecular dynamics simulations, we analyze water transportation and fluctuations of amino acids within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of long-term memory. Moreover, we find that water molecules crossing the ar/R region obey a non-Poisson process. To investigate the effect of 1/f fluctuations on water transportation, we perform restrained molecular dynamics simulations of AQP1 and simple Langevin stochastic simulations. As a result, we confirm that 1/f fluctuations of amino acids contribute to water transportation in AQP1. These findings appreciably enhance our understanding of AQPs and suggest possibilities for developing biomimetic nanopores.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Yoshinori Hirano
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan and Laboratory for Computational Molecular Design, Computational Biology Research Core, Quantitative Biology Center (QBiC), The Institute of Physical and Chemical Research (RIKEN), Kobe, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
3
|
Abstract
Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest that AQP4 is involved in such diverse functions as regulation of extracellular space volume, potassium buffering, cerebrospinal fluid circulation, interstitial fluid resorption, waste clearance, neuroinflammation, osmosensation, cell migration, and Ca(2+) signaling. AQP4 is also required for normal function of the retina, inner ear, and olfactory system. A review will be provided of the physiological roles of AQP4 in brain and of the growing list of data that emphasize the polarized nature of astrocytes.
Collapse
|
4
|
Common force field thermodynamics of cholesterol. ScientificWorldJournal 2013; 2013:207287. [PMID: 24302856 PMCID: PMC3835483 DOI: 10.1155/2013/207287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Four different force fields are examined for dynamic
characteristics using cholesterol as a case study. The
extent to which various types of internal degrees
of freedom become thermodynamically relevant is
evaluated by means of principal component analysis.
More complex degrees of freedom (angle bending,
dihedral rotations) show a trend towards force
field independence. Moreover, charge assignments
for membrane-embedded compounds are revealed to be
critical with significant impact on biological reasoning.
Collapse
|
5
|
Zhang Q, Wang J, Guerrero GD, Cecilia JM, García JM, Li Y, Pérez-Sánchez H, Hou T. Accelerated Conformational Entropy Calculations Using Graphic Processing Units. J Chem Inf Model 2013; 53:2057-64. [DOI: 10.1021/ci400263t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junmei Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ginés D. Guerrero
- Computer
Engineering Department, School of Computer Science, 30100 University of Murcia, Spain
| | - José M. Cecilia
- Computer
Science Department, 30107 Catholic University of Murcia (UCAM), Spain
| | - José M. García
- Computer
Engineering Department, School of Computer Science, 30100 University of Murcia, Spain
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | | | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Kagawa R, Hirano Y, Taiji M, Yasuoka K, Yasui M. Dynamic interactions of cations, water and lipids and influence on membrane fluidity. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|