1
|
Dreab A, Bayse CA. The effect of metalation on antimicrobial piscidins imbedded in normal and oxidized lipid bilayers. RSC Chem Biol 2023; 4:573-586. [PMID: 37547452 PMCID: PMC10398361 DOI: 10.1039/d3cb00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Metalation of the N-terminal Amino Terminal Cu(ii)- and Ni(ii)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(ii) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix of the peptide with the headgroups. Phe1⋯Ni2+ cation-π and Phe2-Phe1 CH-π interactions contribute to a small fraction of structures within the nickelated P1 simulations and may partially protect a bound metal from metal-centered chemical activity. The substitution of Phe2 for Ile2 in P3 sterically blocks conformations with cation-π interactions offering less protection to the metal. This difference between metalated P1 and P3 may indicate a mechanism by which peptide sequence can influence antimicrobial properties. Any loss of bilayer integrity due to chain reversal of the oxidized phospholipid chains of aldo-PC may be enhanced in the presence of metalated piscidins.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| |
Collapse
|
2
|
Paredes SD, Kim S, Rooney MT, Greenwood AI, Hristova K, Cotten ML. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183236. [DOI: 10.1016/j.bbamem.2020.183236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
|
3
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Schumann-Gillett A, O'Mara ML. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:210-219. [DOI: 10.1016/j.bbamem.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/04/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
5
|
Dingeldein A, Sparrman T, Gröbner G. Oxidatively stressed mitochondria-mimicking membranes: A molecular insight into their organization during apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2644-2654. [DOI: 10.1016/j.bbamem.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
|
6
|
Dingeldein APG, Pokorná Š, Lidman M, Sparrman T, Šachl R, Hof M, Gröbner G. Apoptotic Bax at Oxidatively Stressed Mitochondrial Membranes: Lipid Dynamics and Permeabilization. Biophys J 2017; 112:2147-2158. [PMID: 28538152 DOI: 10.1016/j.bpj.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.
Collapse
Affiliation(s)
| | - Šárka Pokorná
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Lidman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
7
|
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered. Sci Rep 2017; 7:5460. [PMID: 28710349 PMCID: PMC5511215 DOI: 10.1038/s41598-017-05539-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
It is a fundamental question in cell biology and biophysics whether sphingomyelin (SM)- and cholesterol (Chol)- driven nanodomains exist in living cells and in model membranes. Biophysical studies on model membranes revealed SM and Chol driven micrometer-sized liquid-ordered domains. Although the existence of such microdomains has not been proven for the plasma membrane, such lipid mixtures have been often used as a model system for ‘rafts’. On the other hand, recent super resolution and single molecule results indicate that the plasma membrane might organize into nanocompartments. However, due to the limited resolution of those techniques their unambiguous characterization is still missing. In this work, a novel combination of Förster resonance energy transfer and Monte Carlo simulations (MC-FRET) identifies directly 10 nm large nanodomains in liquid-disordered model membranes composed of lipid mixtures containing SM and Chol. Combining MC-FRET with solid-state wide-line and high resolution magic angle spinning NMR as well as with fluorescence correlation spectroscopy we demonstrate that these nanodomains containing hundreds of lipid molecules are fluid and disordered. In terms of their size, fluidity, order and lifetime these nanodomains may represent a relevant model system for cellular membranes and are closely related to nanocompartments suggested to exist in cellular membranes.
Collapse
|
8
|
Abe A, Hiraoka M, Ohguro H, Tesmer JJ, Shayman JA. Preferential hydrolysis of truncated oxidized glycerophospholipids by lysosomal phospholipase A2. J Lipid Res 2016; 58:339-349. [PMID: 27993948 DOI: 10.1194/jlr.m070730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
Truncated oxidized glycerophospholipids (ox-PLs) are bioactive lipids resulting from oxidative stress. The catabolic pathways for truncated ox-PLs are not fully understood. Lysosomal phospholipase A2 (LPLA2) with phospholipase A and transacylase activities is a key enzyme in phospholipid homeostasis. The present study assessed whether LPLA2 could hydrolyze truncated ox-PLs. Incubation of LPLA2 with liposomes consisting of 1,2-O-octadecenyl-sn-glycero-3-phosphocholine (DODPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or truncated oxidized phosphatidylcholine (ox-PC)/N-acetylsphingosine (NAS) under acidic conditions resulted in the preferential deacylation at the sn-1 position of the truncated ox-PCs. Additionally, the release of free fatty acid from the truncated ox-PCs preferentially occurred compared with the NAS-acylation. Incubation of LPLA2 with the liposomes consisting of DODPC/DOPC/truncated ox-PC/NAS resulted in the same preferential fatty acid release from the truncated ox-PC. The cationic amphiphilic drug, amiodarone, did not inhibit such fatty acid release, indicating that truncated ox-PCs partition from the lipid membrane into the aqueous phase and react with free LPLA2. Consistent with this mechanism, the hydrolysis of some truncated ox-PCs, but not DOPC, by LPLA2 was detected at neutral pH. Additionally, LPLA2-overexpressed Chinese hamster ovary cells efficiently catabolized truncated ox-PC and were protected from growth inhibition. These findings support the existence of a novel catabolic pathway for truncated ox-PLs via LPLA2.
Collapse
Affiliation(s)
- Akira Abe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miki Hiraoka
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - John J Tesmer
- Life Sciences Institute and Departments of Pharmacology, Biological Chemistry, University of Michigan, Ann Arbor, MI
| | - James A Shayman
- Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Grauby-Heywang C, Moroté F, Mathelié-Guinlet M, Gammoudi I, Faye NR, Cohen-Bouhacina T. Influence of oxidized lipids on palmitoyl-oleoyl-phosphatidylcholine organization, contribution of Langmuir monolayers and Langmuir-Blodgett films. Chem Phys Lipids 2016; 200:74-82. [PMID: 27421664 DOI: 10.1016/j.chemphyslip.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
In this work, we studied the interaction of two oxidized lipids, PoxnoPC and PazePC, with POPC phospholipid. Mean molecular areas obtained from (π-A) isotherms of mixed PoxnoPC-POPC and PazePC-POPC monolayers revealed different behaviors of these two oxidized lipids: the presence of PoxnoPC in the monolayers induces their expansion, mean molecular areas being higher than those expected in the case of ideal mixtures. PazePC-POPC behave on the whole ideally. This difference can be explained by a different conformation of oxidized lipids. Moreover the carboxylic function of PazePC is protonated under our experimental conditions, as shown by (π-A) isotherms of PazePC at different pH values. Both oxidized lipids induce also an increase of the monolayer elasticity, PoxnoPC being slightly more efficient than PazePC. These monolayers were transferred from the air-water interface onto mica supports for a study by AFM. AFM images are on the whole homogenous, suggesting the presence of only one lipid phase in both cases. However, in the case of PazePC-POPC monolayers, AFM images show also the presence of areas thicker of 7nm to 10nm than the surrounding lipid phase, probably due to the local formation of multilayer systems induced by compression.
Collapse
Affiliation(s)
- Christine Grauby-Heywang
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Fabien Moroté
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Marion Mathelié-Guinlet
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Ibtissem Gammoudi
- Cellule de transfert NanoPhyNov, Université de Bordeaux, 351 cours de la libération, Talence Cedex 33405, France.
| | - Ndeye Rokhaya Faye
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Touria Cohen-Bouhacina
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| |
Collapse
|
10
|
Mendes Ferreira T, Sood R, Bärenwald R, Carlström G, Topgaard D, Saalwächter K, Kinnunen PKJ, Ollila OHS. Acyl Chain Disorder and Azelaoyl Orientation in Lipid Membranes Containing Oxidized Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6524-33. [PMID: 27260273 DOI: 10.1021/acs.langmuir.6b00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.
Collapse
Affiliation(s)
- Tiago Mendes Ferreira
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Rohit Sood
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| | - Ruth Bärenwald
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Göran Carlström
- Centre for Analysis and Synthesis, Lund University , SE-221 00 Lund, Sweden
| | - Daniel Topgaard
- Physical Chemistry, Lund University , SE-221 00 Lund, Sweden
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Paavo K J Kinnunen
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| | - O H Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| |
Collapse
|
11
|
Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol Life Sci 2014; 72:1059-71. [PMID: 25410378 PMCID: PMC7079780 DOI: 10.1007/s00018-014-1780-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022]
Abstract
Oxidized phospholipids (OxPL) were originally discovered as by-products and mediators of chronic inflammation such as in atherosclerosis. Over the last years, an increasing body of evidence led to the notion that OxPL not only contribute to the pathogenesis of chronic inflammatory processes but in addition play an integral role as modulators of inflammation during acute infections. Thereby, host defense mechanisms involve the generation of oxygen radicals that oxidize ubiquitously present phospholipids, which in turn act as danger-associated molecular patterns (DAMPs). These OxPL-derived DAMPs can exhibit both pro- and anti-inflammatory functions that ultimately alter the host response to pathogens. In this review, we summarize the currently available data on the role of OxPL in infectious diseases.
Collapse
|
12
|
HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Arch Biochem Biophys 2014; 548:1-10. [DOI: 10.1016/j.abb.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
13
|
Wallgren M, Beranova L, Pham QD, Linh K, Lidman M, Procek J, Cyprych K, Kinnunen PKJ, Hof M, Gröbner G. Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study. Faraday Discuss 2013; 161:499-513; discussion 563-89. [PMID: 23805755 DOI: 10.1039/c2fd20089a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Membranes undergo severe changes under oxidative stress conditions due to the creation of oxidized phospholipid (OxPL) species, which possess molecular properties quite different from their parental lipid components. These OxPLs play crucial roles in various pathological disorders and their occurrence is involved in the onset of intrinsic apoptosis, a fundamental pathway in programmed mammalian cell death. However, the molecular mechanisms by which these lipids can exert their apoptotic action via their host membranes (e.g., altering membrane protein function) are poorly understood. Therefore, we studied the impact of OxPLs on the organization and biophysical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) based lipid membranes by differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy. Incorporation of defined OxPLs with either a carboxyl group (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC)) or aldehyde (1-palmitoyl-(9'oxononanoyl)-sn-glycero-3-phosphocholine (PoxnoPC)) at their truncated sn-2-chain ends enabled us to reveal OxPL species-dependent differences. The calorimetric studies revealed significant effects of OxPLs on the thermotropic phase behavior of DMPC bilayers, especially at elevated levels where PazePC induced more pronounced effects than PoxnoPC. Temperature-dependent changes in the solid state 31P NMR spectra, which provided information of the lipid headgroup region in these mixed membrane systems, reflected this complex phase behavior. In the temperature region between 293 K (onset of the Lalpha-phase) and 298 K, two overlapping NMR spectra were visible which reflect the co-existence of two liquid-crystalline lamellar phases with presumably one reflecting OxPL-poor domains and the other OxPL-rich domains. Deconvolution of the DSC profiles also revealed these two partially overlapping thermal events. In addition, a third thermal, non-NMR-visible, event occurred at low temperatures, which can most likely be associated to a solid-phase mixing/demixing process of the OxPL-containing membranes. The observed phase transitions were moved to higher temperatures in the presence of heavy water due its condensing effect, where additional wideline 2H-NMR studies revealed a complex hydration pattern in the presence of OxPLs.
Collapse
Affiliation(s)
- Marcus Wallgren
- Department of Chemistry, Umeå University, Umeå, Sweden SE-901 87
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wallgren M, Lidman M, Pedersen A, Brännström K, Karlsson BG, Gröbner G. Reconstitution of the anti-apoptotic Bcl-2 protein into lipid membranes and biophysical evidence for its detergent-driven association with the pro-apoptotic Bax protein. PLoS One 2013; 8:e61452. [PMID: 23626686 PMCID: PMC3634071 DOI: 10.1371/journal.pone.0061452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2) protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax), are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM) and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD) spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23)-lauryl-ether (Brij-35) detergent at a level below its critical micelle concentration (CMC). Additional surface plasmon resonance (SPR) measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2) to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC). Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.
Collapse
Affiliation(s)
| | - Martin Lidman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Gerhard Gröbner
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
15
|
Volinsky R, Kinnunen PKJ. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J 2013; 280:2806-16. [PMID: 23506295 DOI: 10.1111/febs.12247] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes.
Collapse
Affiliation(s)
- Roman Volinsky
- Helsinki Biophysics & Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | |
Collapse
|