1
|
Volmer J, Cerajewski U, Alfes M, Bender J, Abert J, Schmidt C, Ott M, Hinderberger D. Aqueous Ionic Liquid Mixtures as Minimal Models of Lipid Bilayer Membranes. ACS Biomater Sci Eng 2024; 10:4802-4811. [PMID: 39066733 PMCID: PMC11322907 DOI: 10.1021/acsbiomaterials.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
We introduce aqueous ionic liquid (IL) mixtures, specifically mixtures of 1-butyl-3-imidazoliumtetrafluoroborate (BMImBF4), with water as a minimal model of lipid bilayer membranes. Imidazolium-based ILs are known to form clustered nanoscale structures in which local inhomogeneities, micellar or lamellar structures, are formed to shield hydrophobic parts of the cation from the polar cosolvent (water). To investigate these nanostructures, dynamic light scattering (DLS) on samples with different mixing ratios of water and BMImBF4 was performed. At mixing ratios of 50% and 45% (v/v), small and homogeneous nanostructures can indeed be detected. To test whether, in particular, these stable nanostructures in aqueous mixtures may mimic the effects of phospholipid bilayer membranes, we further investigated their interaction with myelin basic protein (MBP), a peripheral, intrinsically disordered membrane protein of the myelin sheath. Using dynamic light scattering (DLS), continuous wave (CW) and pulse electron paramagnetic resonance (EPR), and small-angle X-ray scattering (SAXS) on recombinantly produced, "healthy" charge variants rmC1WT and double cysteine variant C1S17CH85C, we find that the size and the shape of the determined nanostructures in an optimum mixture offer model membranes in which the protein exhibits native behavior. SAXS measurements illuminate the size and shape of the nanostructures and indicate IL-rich "beads" clipped together by functional MBP, one of the in vivo roles of the protein in the myelin sheath. All the gathered data combined indicate that the 50% and 45% aqueous IL mixtures can be described as offering minimal models of a lipid mono- or bilayer that allow native processing and potential study of at least peripheral membrane proteins like MBP.
Collapse
Affiliation(s)
- Jonas Volmer
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Ulrike Cerajewski
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Marie Alfes
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Julian Bender
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Josefin Abert
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry − Biochemistry, Johannes Gutenberg University
Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Maria Ott
- Martin
Luther University Halle-Wittenberg, Institute of Biochemistry and
Biotechnology, Protein Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
2
|
Träger J, Meister A, Hause G, Harauz G, Hinderberger D. Shaping membrane interfaces in lipid vesicles mimicking the cytoplasmic leaflet of myelin through variation of cholesterol and myelin basic protein contents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184179. [PMID: 37244538 DOI: 10.1016/j.bbamem.2023.184179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.
Collapse
Affiliation(s)
- Jennica Träger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany; Institute of Biochemistry, Physical Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany.
| |
Collapse
|
3
|
Sarmah RJ, Kundu S. Stable layers of pure myelin basic protein (MBP): Structure, morphology and hysteresis behaviours. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Hoffmann M, Haselberger D, Hofmann T, Müller L, Janson K, Meister A, Das M, Vargas C, Keller S, Kastritis PL, Schmidt C, Hinderberger D. Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules 2021; 22:3901-3912. [PMID: 34324309 DOI: 10.1021/acs.biomac.1c00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are among the most common diseases in modern society. However, the molecular bases of diseases such as multiple sclerosis or Charcot-Marie-Tooth disease remain far from being fully understood. Research in this field is limited by the complex nature of native myelin and by difficulties in obtaining good in vitro model systems of myelin. Here, we introduce an easy-to-use model system of the myelin sheath that can be used to study myelin proteins in a native-like yet well-controlled environment. To this end, we present myelin-mimicking nanodiscs prepared through one of the amphiphilic copolymers styrene/maleic acid (SMA), diisobutylene/maleic acid (DIBMA), and styrene/maleimide sulfobetaine (SMA-SB). These nanodiscs were tested for their lipid composition using chromatographic (HPLC) and mass spectrometric (MS) methods and, utilizing spin probes within the nanodisc, their comparability with liposomes was studied. In addition, their binding behavior with bovine myelin basic protein (MBP) was scrutinized to ensure that the nanodiscs represent a suitable model system of myelin. Our results suggest that both SMA and SMA-SB are able to solubilize the myelin-like (cytoplasmic) liposomes without preferences for specific lipid headgroups or fatty acyl chains. In nanodiscs of both SMA and SMA-SB (called SMA(-SB)-lipid particles, short SMALPs or SMA-SBLPs, respectively), the polymers restrict the lipids' motion in the hydrophobic center of the bilayer. The headgroups of the lipids, however, are sterically less hindered in nanodiscs when compared with liposomes. Myelin-like SMALPs are able to bind bovine MBP, which can stack the lipid bilayers like in native myelin, showing the usability of these simple, well-controlled systems in further studies of protein-lipid interactions of native myelin.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - David Haselberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Tommy Hofmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Lisa Müller
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Kevin Janson
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Tahir U, Hussam A, Roy P, Hashmi I. Noncovalent Association and Partitioning of Some Perfume Components at Infinite Dilution with Myelin Basic Protein Pseudophase in Normal Saline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4793-4801. [PMID: 33851853 DOI: 10.1021/acs.langmuir.0c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myelin basic protein (MBP), one of the major protein constituents of the myelin sheath, possesses unique ligand-binding features. We present a novel equilibrium headspace gas chromatographic technique to examine the thermodynamics of noncovalent interactions between common perfume components: Lilial, Hedione, Hexylcinnamic aldehyde, and Versalide with MBP monomers and its hexameric MBP-pseudophase. A general theoretical model is used to calculate the critical aggregation concentration (cac) of MBP, perfume component binding constants with monomeric MBP, K11, and MBP as pseudophase, Kn1, and free energies for perfume component binding with monomeric MBP, ΔGb,11, and MBP as pseudophase, ΔGb,n1. In addition, the pseudophase-water partition coefficients, Kx, the free energies of transfer of perfume from bulk water to the MBP-pseudophase, ΔGt, and the intra-aggregate activity coefficients, γm∞, at infinite dilution were also determined. The cac value measured by the method of fractional distribution is a unique and precise approach in understanding the aggregation phenomenon. Within the experimental error, the 1:1 binding free energies did not differ by more than 1 kJ/mol among the perfume components but favored the MBP pseudophase binding by 6 kJ/mol. Therefore, that protein aggregation can enhance the binding of small molecules is probably a general conclusion. While the magnitudes of K11, Kn1, ΔGb, Kx, and ΔGt show weak trends, the γm∞ values show a strong and distinct trend in interaction, spanning 4 orders of magnitude among the perfume components.
Collapse
Affiliation(s)
| | | | | | - Irina Hashmi
- Department of Information Science and Technology, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
6
|
Membrane stiffness and myelin basic protein binding strength as molecular origin of multiple sclerosis. Sci Rep 2020; 10:16691. [PMID: 33028889 PMCID: PMC7542173 DOI: 10.1038/s41598-020-73671-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Myelin basic protein (MBP) and its interaction with lipids of the myelin sheath plays an important part in the pathology of multiple sclerosis (MS). Previous studies observed that changes in the myelin lipid composition lead to instabilities and enhanced local curvature of MBP-lipid multilayer structures. We investigated the molecular origin of the instability and found that the diseased lipid membrane has a 25% lower bending rigidity, thus destabilizing smooth \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>1\,$$\end{document}>1µm curvature radius structures such as in giant unilamellar vesicles. MBP-mediated assembling of lipid bilayers proceeds in two steps, with a slow second step occurring over many days where native lipid membranes assemble into well-defined multilayer structures, whereas diseased lipid membranes form folded assemblies with high local curvature. For both native and diseased lipid mixtures we find that MBP forms dense liquid phases on top of the lipid membranes mediating attractive membrane interactions. Furthermore, we observe MBP to insert into its bilayer leaflet side in case of the diseased lipid mixture, whereas there is no insertion for the native mixture. Insertion increases the local membrane curvature, and could be caused by a decrease of the sphingomyelin content of the diseased lipid mixture. These findings can help to open a pathway to remyelination strategies.
Collapse
|
7
|
Widder K, Harauz G, Hinderberger D. Myelin basic protein (MBP) charge variants show different sphingomyelin-mediated interactions with myelin-like lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183077. [PMID: 31805269 DOI: 10.1016/j.bbamem.2019.183077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is correlated with increased deimination of myelin basic protein (MBP) in the central nervous system. Here, the interaction of MBP C1 (charge: +19) and MBP C8 (charge: +13) with the major lipids of the cytoplasmic side of the oligodendrocyte membrane is analysed using monolayer adsorption experiments and epifluorescence microscopy. Our findings show that the electrostatic attraction between the positively charged proteins and negatively charged lipids in the myelin-like monolayers competes with the incorporation of MBP into regions directly bordering cholesterol-rich domains. The latter is favoured to avoid additional lipid condensation and reduction in fluidity of the phospholipid layer. We find that MBP C1 does not incorporate at the cholesterol-rich domains if sphingomyelin (SM) is absent from the lipid composition. In contrast, MBP C8 is still incorporated near cholesterol-enriched regions without SM. Thus, the highly charged C1 variant needs a specific interaction with SM, whereas for C8 the incorporation at the cholesterol-rich regions is ensured due to its reduced net positive charge. This phenomenon may be relevant for the correlation of higher amounts of MBP C8 in brains of adult MS patients and healthy children, in which the amount of SM is reduced compared to healthy adults.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
8
|
Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of Myelin Basic Protein with Myelin-like Lipid Monolayers at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6095-6108. [PMID: 29722987 DOI: 10.1021/acs.langmuir.8b00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interaction of myelin basic protein (MBP) and the cytoplasmic leaflets of the oligodendrocyte membrane is essential for the formation and compaction of the myelin sheath of the central nervous system and is altered aberrantly and implicated in the pathogenesis of neurodegenerative diseases like multiple sclerosis. To gain more detailed insights into this interaction, the adsorption of MBP to model lipid monolayers of similar composition to the myelin of the central nervous system was studied at the air-water interface with monolayer adsorption experiments. Measuring the surface pressure and the related maximum insertion pressure of MBP for different myelin-like lipid monolayers provided information about the specific role of each of the single lipids in the myelin. Depending on the ratio of negatively charged lipids to uncharged lipids and the distance between charges, the adsorption process was found to be determined by two counteracting effects: (i) protein incorporation, resulting in an increasing surface pressure and (ii) lipid condensation due to electrostatic interaction between the positively charged protein and negatively charged lipids, resulting in a decreasing surface pressure. Although electrostatic interactions led to high insertion pressures, the associated lipid condensation lowered the fluidity of the myelin-like monolayer.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Jennica Träger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Andreas Kerth
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - George Harauz
- Department of Molecular and Cellular Biology , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Dariush Hinderberger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
9
|
Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, Stahlberg H, Kursula P. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 2017; 7:4974. [PMID: 28694532 PMCID: PMC5504075 DOI: 10.1038/s41598-017-05364-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent, United Kingdom
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Jussi Tuusa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
10
|
Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy. Biophys J 2017; 110:2441-2450. [PMID: 27276262 PMCID: PMC4906378 DOI: 10.1016/j.bpj.2016.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes.
Collapse
|
11
|
Bessonov K, Vassall KA, Harauz G. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. Proteins 2017; 85:1336-1350. [PMID: 28380689 DOI: 10.1002/prot.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Systems and Modeling Unit, Montefiore Institute, Université de Liège, Quartier Polytech 1, Allée de la Découverte 10, Liège, 4000, Belgium
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
12
|
Shaharabani R, Ram-On M, Avinery R, Aharoni R, Arnon R, Talmon Y, Beck R. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis. J Am Chem Soc 2016; 138:12159-65. [DOI: 10.1021/jacs.6b04826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rona Shaharabani
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maor Ram-On
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ram Avinery
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rina Aharoni
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Arnon
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yeshayahu Talmon
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Roy Beck
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School
of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73:3291-310. [PMID: 27141942 PMCID: PMC4967101 DOI: 10.1007/s00018-016-2228-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
14
|
Chang KJ, Redmond SA, Chan JR. Remodeling myelination: implications for mechanisms of neural plasticity. Nat Neurosci 2016; 19:190-7. [PMID: 26814588 DOI: 10.1038/nn.4200] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023]
Abstract
One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Department of Neurology, University of California, San Francisco, California, USA
| | - Stephanie A Redmond
- Department of Neurology, University of California, San Francisco, California, USA.,Program in Neuroscience, University of California, San Francisco, California, USA
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, California, USA.,Program in Neuroscience, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
16
|
Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc Natl Acad Sci U S A 2014; 111:E768-75. [PMID: 24516125 DOI: 10.1073/pnas.1401165111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.
Collapse
|
17
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
18
|
Rahman LN, McKay F, Giuliani M, Quirk A, Moffatt BA, Harauz G, Dutcher JR. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:967-80. [PMID: 23219803 DOI: 10.1016/j.bbamem.2012.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 12/28/2022]
Abstract
Dehydrins (group 2 late embryogenesis abundant proteins) are intrinsically-disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Their roles include stabilizing cellular proteins and membranes, and sequestering metal ions. Here, we investigate the membrane interactions of the acidic dehydrin TsDHN-1 and the basic dehydrin TsDHN-2 derived from the crucifer Thellungiella salsuginea that thrives in the Canadian sub-Arctic. We show using compression studies with a Langmuir-Blodgett trough that both dehydrins can stabilize lipid monolayers with a lipid composition mimicking the composition of the plant outer mitochondrial membrane, which had previously been shown to induce ordered secondary structures (disorder-to-order transitions) in the proteins. Ellipsometry of the monolayers during compression showed an increase in monolayer thickness upon introducing TsDHN-1 (acidic) at 4°C and TsDHN-2 (basic) at room temperature. Atomic force microscopy of supported lipid bilayers showed temperature-dependent phase transitions and domain formation induced by the proteins. These results support the conjecture that acidic dehydrins interact with and potentially stabilize plant outer mitochondrial membranes in conditions of cold stress. Single-molecule force spectroscopy of both proteins pulled from supported lipid bilayers indicated the induced formation of tertiary conformations in both proteins, and potentially a dimeric association for TsDHN-2.
Collapse
Affiliation(s)
- Luna N Rahman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Ahmed MAM, De Avila M, Polverini E, Bessonov K, Bamm VV, Harauz G. Solution nuclear magnetic resonance structure and molecular dynamics simulations of a murine 18.5 kDa myelin basic protein segment (S72-S107) in association with dodecylphosphocholine micelles. Biochemistry 2012; 51:7475-87. [PMID: 22947219 DOI: 10.1021/bi300998x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 18.5 kDa myelin basic protein (MBP), the most abundant splice isoform in adult mammalian myelin, is a multifunctional, intrinsically disordered protein involved in the development and compaction of the myelin sheath in the central nervous system. A highly conserved central segment comprises a membrane-anchoring amphipathic α-helix followed by a proline-rich segment that represents a ligand for SH3 domain-containing proteins. Here, we have determined using solution nuclear magnetic resonance spectroscopy the structure of a 36-residue peptide fragment of MBP (murine 18.5 kDa residues S72-S107, denoted the α2-peptide) comprising these two structural motifs, in association with dodecylphosphocholine (DPC) micelles. The structure was calculated using CS-ROSETTA (version 1.01) because the nuclear Overhauser effect restraints were insufficient for this protein. The experimental studies were complemented by molecular dynamics simulations of a corresponding 24-residue peptide fragment (murine 18.5 kDa residues E80-G103, denoted the MD-peptide), also in association with a DPC micelle in silico. The experimental and theoretical results agreed well with one another, despite the independence of the starting structures and analyses, both showing membrane association via the amphipathic α-helix, and a sharp bend in the vicinity of the Pro93 residue (murine 18.5 kDa sequence numbering). Overall, the conformations elucidated here show how the SH3 ligand is presented to the cytoplasm for interaction with SH3 domain-containing proteins such as Fyn and contribute to our understanding of myelin architecture at the molecular level.
Collapse
Affiliation(s)
- Mumdooh A M Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|