1
|
Palikova YA, Palikov VA, Borozdina NA, Pakhomova IA, Kalabina EA, Kravchenko IA, Dalevich RA, Dyachenko IA. Study of PT1 Peptide Analgesic and Anti-Inflammatory Activity on a Local Inflammation Model in Mice CD-1. Bull Exp Biol Med 2024; 177:217-220. [PMID: 39093473 DOI: 10.1007/s10517-024-06159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 08/04/2024]
Abstract
PT1 peptide isolated from the venom of spider Geolycosa sp. is a modulator of P2X3 receptors that play a role in the development of inflammation and the transmission of pain impulses. The anti-inflammatory and analgesic efficacy of the PT1 peptide was studied in a model of complete Freund's adjuvant-induced paw inflammation in CD-1 mice. The analgesic activity of PT1 peptide was maximum after intramuscular injection at a dose of 0.01 mg/kg, which surpassed the analgesic effect of diclofenac at a dose of 1 mg/kg. The anti-inflammatory activity was maximum after intramuscular injection at a dose of 0.0001 mg/kg; a decrease in paw thickness was observed as soon as 2 h after the administration of the PT1 peptide against the background of inflammation development. All tested doses of PT1 peptide showed high anti-inflammatory activity 4 and 24 h after administration. PT1 peptide at a dose of 0.01 mg/kg when injected intramuscularly simultaneously produced high anti-inflammatory and analgesic effects compared to other doses of the peptide. Increasing the dose of PT1 peptide led to a gradual decrease in its analgesic and anti-inflammatory activity; increasing the dose of intramuscular injection to 0.1 and 1 mg/kg is inappropriate.
Collapse
Affiliation(s)
- Yu A Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - V A Palikov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- PushchGENI - Branch of BIOTECH University, Pushchino, Moscow Region, Russia
| | - N A Borozdina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
- PushchGENI - Branch of BIOTECH University, Pushchino, Moscow Region, Russia.
| | - I A Pakhomova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - E A Kalabina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - I A Kravchenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - R A Dalevich
- PushchGENI - Branch of BIOTECH University, Pushchino, Moscow Region, Russia
| | - I A Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- PushchGENI - Branch of BIOTECH University, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
3
|
Sakai S, Fujita Y, Juichi H, Nakagawa Y, Miyashita M. Chemical synthesis and functional characterization of LaIT3, an insecticidal two-domain peptide in Liocheles australasiae venom. Toxicon 2024; 238:107564. [PMID: 38113946 DOI: 10.1016/j.toxicon.2023.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
LaIT3, belonging to the β-KTx family, is an insecticidal peptide in the venom of the Liocheles australasiae scorpion. Peptides in the family consist of two structural domains: an N-terminal domain with an α-helical structure common to antimicrobial peptides and a C-terminal domain with a structure stabilized by three disulfide bonds common to ion-channel blocking peptides. However, the contribution of each domain of LaIT3 to its activity remained unknown. In addition, some peptidic components are known to be enzymatically cleaved in the venom, which generates partial peptides. In our study, we searched for partial peptides of LaIT3 using LC/MS analysis and found peptides generated by cleavage at the central region of LaIT3. We subsequently synthesized full-length LaIT3 and its partial peptides to evaluate their insecticidal activity. The results, showing that only full-length LaIT3 is active, indicate that the insecticidal activity of LaIT3 depends on the presence of both N-terminal and C-terminal domains. Furthermore, LaIT3 did not exhibit the cytolytic activity against insect cells and showed only weak antibacterial activity. These findings suggest that its action is not due to a simple membrane disruption effect but instead due to actions on specific target molecules, including ion channels.
Collapse
Affiliation(s)
- Shoichi Sakai
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuumi Fujita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hironori Juichi
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Yuan F, Li S, Huang B, Hu Y, Zeng X, Peng Y, Du C, Rong M. Molecular mechanism by which spider-driving peptide potentiates coagulation factors. Biomed Pharmacother 2023; 166:115421. [PMID: 37660649 DOI: 10.1016/j.biopha.2023.115421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Hemostasis is a crucial process that quickly forms clots at injury sites to prevent bleeding and infections. Dysfunctions in this process can lead to hemorrhagic disorders, such as hemophilia and thrombocytopenia purpura. While hemostatic agents are used in clinical treatments, there is still limited knowledge about potentiators targeting coagulation factors. Recently, LCTx-F2, a procoagulant spider-derived peptide, was discovered. This study employed various methods, including chromogenic substrate analysis and dynamic simulation, to investigate how LCTx-F2 enhances the activity of thrombin and FXIIa. Our findings revealed that LCTx-F2 binds to thrombin and FXIIa in a similar manner, with the N-terminal penetrating the active-site cleft of the enzymes and the intermediate section reinforcing the peptide-enzyme connection. Interestingly, the C-terminal remained at a considerable distance from the enzymes, as evidenced by the retention of affinity for both enzymes using truncated peptide T-F2. Furthermore, results indicated differences in the bonding relationship of critical residues between thrombin and FXIIa, with His13 facilitating binding to thrombin and Arg7 being required for binding to FXIIa. Overall, our study sheds light on the molecular mechanism by which LCTx-F2 potentiates coagulation factors, providing valuable insights that may assist in designing drugs targeting procoagulation factors.
Collapse
Affiliation(s)
- Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Shuwan Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Biao Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Ya Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Xiongzhi Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Yanmei Peng
- Institute of Innovative Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; Institute of Innovative Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China.
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China.
| |
Collapse
|
5
|
Megaly AMA, Miyashita M, Abdel-Wahab M, Nakagawa Y, Miyagawa H. Molecular Diversity of Linear Peptides Revealed by Transcriptomic Analysis of the Venom Gland of the Spider Lycosa poonaensis. Toxins (Basel) 2022; 14:toxins14120854. [PMID: 36548751 PMCID: PMC9788040 DOI: 10.3390/toxins14120854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spider venom is a complex mixture of bioactive components. Previously, we identified two linear peptides in Lycosa poonaensis venom using mass spectrometric analysis and predicted the presence of more linear peptides therein. In this study, a transcriptomic analysis of the L. poonaensis venom gland was conducted to identify other undetermined linear peptides in the venom. The results identified 87 contigs encoding peptides and proteins in the venom that were similar to those in other spider venoms. The number of contigs identified as neurotoxins was the highest, and 15 contigs encoding 17 linear peptide sequences were identified. Seven peptides that were representative of each family were chemically synthesized, and their biological activities were evaluated. All peptides showed significant antibacterial activity against Gram-positive and Gram-negative bacteria, although their selectivity for bacterial species differed. All peptides also exhibited paralytic activity against crickets, but none showed hemolytic activity. The secondary structure analysis based on the circular dichroism spectroscopy showed that all these peptides adopt an amphiphilic α-helical structure. Their activities appear to depend on the net charge, the arrangement of basic and acidic residues, and the hydrophobicity of the peptides.
Collapse
Affiliation(s)
- Alhussin Mohamed Abdelhakeem Megaly
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Masahiro Miyashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Correspondence:
| | - Mohammed Abdel-Wahab
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
7
|
Li P, Zhang Z, Liao Q, Meng E, Mwangi J, Lai R, Rong M. LCTX-F2, a Novel Potentiator of Coagulation Factors From the Spider Venom of Lycosa singoriensis. Front Pharmacol 2020; 11:896. [PMID: 32612531 PMCID: PMC7308506 DOI: 10.3389/fphar.2020.00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Spider venoms contain many functional proteins/peptides such as proteinases, serine/cysteine proteinase inhibitors, insecticidal toxins, and ion channel toxins. However, to date, no peptide toxin with procoagulant activities has been identified from spider venom. In this study, a novel toxin LCTX-F2 with coagulation-promoting activity was identified and characterized in the venom of the spider Lycosa singoriensis (L. singoriensis). LCTX-F2 significantly shortened activated partial thromboplastin time (APTT), clotting time, and plasma recalcification time. This toxin directly interacted with several coagulation factors such as FXIIa, kallikrein, thrombin, and FXa and increased their protease activities. In liver bleeding and tail bleeding mouse models, LCTX-F2 significantly decreased the number of blood cells and bleeding time in a dose-dependent manner. At the same dosage, LCTX-F2 exhibited a more significant procoagulant effect than epsilon aminocaproic acid (EACA). Moreover, LCTX-F2 showed no cytotoxic or hemolytic activity against either normal cells or red blood cells. Our results suggested that LCTX-F2 is a potentiator of coagulation factors with the potential for use in the development of procoagulant drugs.
Collapse
Affiliation(s)
- Pengpeng Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Er Meng
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Palikova YA, Palikov VA, Dyachenko IA. Maximum tolerant dose and analgesic activity of PT1 peptide. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.38520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The article presents the results of the study of the maximum tolerant dose (MTD) and the analgesic activity of peptide PT1 isolated from Alopecosa marikovskyi spider venom. PT1 is the first compound of polypeptide nature, capable of exerting a selective modulating effect on purinergic P2X3 receptors.
Materials and methods: The study was conducted on 174 ICR mice. The analgesic activity of the peptide was evaluated in a thermal hypersensitivity test triggered by CFA and in a model of chemical irritation.
Results and discussion: The determined MTD for the peptide PT1 when administered intravenously provides evidence to attribute it to low-toxic compounds. The maximum analgesic activity of PT1 using the biomodel of hypersensitivity induced by CFA when tested 15 minutes after the administration was recorded at doses of 0.1 and 0.5 mg/kg. In the visceral pain test, the maximum analgesic activity 15 minutes after the administration of the chemical stimulus was observed at a dose of 0.01 mg/kg.
Conclusions: According to the results of testing peptide PT1, it is shown that it belongs to low-toxic compounds, has a pronounced analgesic activity in a wide range of doses of 0.0001–10 mg/kg.
Collapse
|
9
|
The Dual Prey-Inactivation Strategy of Spiders-In-Depth Venomic Analysis of Cupiennius salei. Toxins (Basel) 2019; 11:toxins11030167. [PMID: 30893800 PMCID: PMC6468893 DOI: 10.3390/toxins11030167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Most knowledge of spider venom concerns neurotoxins acting on ion channels, whereas proteins and their significance for the envenomation process are neglected. The here presented comprehensive analysis of the venom gland transcriptome and proteome of Cupiennius salei focusses on proteins and cysteine-containing peptides and offers new insight into the structure and function of spider venom, here described as the dual prey-inactivation strategy. After venom injection, many enzymes and proteins, dominated by α-amylase, angiotensin-converting enzyme, and cysteine-rich secretory proteins, interact with main metabolic pathways, leading to a major disturbance of the cellular homeostasis. Hyaluronidase and cytolytic peptides destroy tissue and membranes, thus supporting the spread of other venom compounds. We detected 81 transcripts of neurotoxins from 13 peptide families, whereof two families comprise 93.7% of all cysteine-containing peptides. This raises the question of the importance of the other low-expressed peptide families. The identification of a venom gland-specific defensin-like peptide and an aga-toxin-like peptide in the hemocytes offers an important clue on the recruitment and neofunctionalization of body proteins and peptides as the origin of toxins.
Collapse
|
10
|
Affiliation(s)
- Olena Filchakova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
11
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Palikova YA, Skobtsova LA, Zharmukhamedova TY, Palikov VA, Rudenko VB, Khokhlova ON, Lobanov AV, Rzhevskii DI, Slashcheva GA, D’yachenko EV, Belous GI, Andreev YA, Logashina YA, Kozlov SA, Yavorskii AN, Elyakova EG, D’yachenko IA. Influence of New Promising Analgesic Compounds on Locomotor Activity of Mice. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Palikova YA, Skobtsova LA, Palikov VA, Belous GI, Khokhlova ON, Lobanov AV, Slashcheva GA, Rzhevskii DI, Rudenko VB, Kalabina EA, Osipova GA, Andreev YA, Logashina YA, Kozlov SA, Yavorskii AN, Elyakova G, D’yachenko IA. Effects of Novel Potential Analgesic Compounds on the Cardiovascular and Respiratory Systems. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Akef HM. Anticancer, antimicrobial, and analgesic activities of spider venoms. Toxicol Res (Camb) 2018; 7:381-395. [PMID: 30090588 PMCID: PMC6060684 DOI: 10.1039/c8tx00022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are complex mixtures composed of a variety of compounds, including salts, small organic molecules, peptides, and proteins. But, the venom of a few species is dangerous to humans. High levels of chemical diversity make spider venoms attractive subjects for chemical prospecting. Many spider venom components show potential activity against a wide range of human diseases. However, the development of novel venom-derived therapeutics requires an understanding of their mechanisms of action. This review will highlight the structures, activities and the possible mechanisms of action of spider venoms and their components against cancer, microbial infections, and pain.
Collapse
Affiliation(s)
- Hassan M Akef
- National Organization for Research and Control of Biologicals (NORCB) , Giza , Egypt . ; ; Tel: +20-2-37480478
| |
Collapse
|
15
|
Esipov RS, Stepanenko VN, Zvereva IO, Makarov DA, Kostromina MA, Kostromina TI, Muravyova TI, Miroshnikov AI, Grishin EV. Biotechnological Method for Production of Recombinant Peptide Analgesic (Purotoxin-1) from Geolycosa sp. Spider Poison. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
17
|
Oldrati V, Koua D, Allard PM, Hulo N, Arrell M, Nentwig W, Lisacek F, Wolfender JL, Kuhn-Nentwig L, Stöcklin R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS One 2017; 12:e0172966. [PMID: 28306751 PMCID: PMC5357004 DOI: 10.1371/journal.pone.0172966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/13/2017] [Indexed: 11/18/2022] Open
Abstract
Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae), Poecilotheria formosa (Theraphosidae), Viridasius fasciatus (Viridasiidae) and Latrodectus mactans (Theridiidae). This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK) structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins), revealed the presence of 14 cysteine rich peptides, out of which five were ICK toxins belonging to the CSTX superfamily. This in depth profiling of distinct ICK peptide families identified across the four spider species highlighted the high conservation of these neurotoxins among spider families.
Collapse
Affiliation(s)
- Vera Oldrati
- Atheris SA, Chemin d’Alcire 1, Plan-les-Ouates, Geneva, Switzerland
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 1, Rue Michel-Servet, Geneva 4, Switzerland
- * E-mail:
| | - Dominique Koua
- Atheris SA, Chemin d’Alcire 1, Plan-les-Ouates, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 1, Rue Michel-Servet, Geneva 4, Switzerland
| | - Nicolas Hulo
- University of Geneva, CMU, 1, Rue Michel Servet, Geneva 4, Switzerland
- Atheris Laboratories, Chemin d’Alcire 1, Plan-les-Ouates, Geneva, Switzerland
| | - Miriam Arrell
- Atheris SA, Chemin d’Alcire 1, Plan-les-Ouates, Geneva, Switzerland
| | - Wolfgang Nentwig
- University of Bern, Institute of Ecology and Evolution, 6, Baltzerstrasse, Bern, Switzerland
| | - Frédérique Lisacek
- University of Geneva, CMU, 1, Rue Michel Servet, Geneva 4, Switzerland
- SIB Swiss Institute of Bioinformatics, CUI, 7, Route de Drize, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 1, Rue Michel-Servet, Geneva 4, Switzerland
| | - Lucia Kuhn-Nentwig
- University of Bern, Institute of Ecology and Evolution, 6, Baltzerstrasse, Bern, Switzerland
| | - Reto Stöcklin
- Atheris SA, Chemin d’Alcire 1, Plan-les-Ouates, Geneva, Switzerland
| |
Collapse
|
18
|
Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. Biochem J 2016; 473:3113-26. [DOI: 10.1042/bcj20160573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023]
Abstract
Traditionally, arachnid venoms are known to contain two particularly important groups of peptide toxins. One is disulfide-rich neurotoxins with a predominance of β-structure that specifically target protein receptors in neurons or muscle cells. The other is linear cationic cytotoxins that form amphiphilic α-helices and exhibit rather non-specific membrane-damaging activity. In the present paper, we describe the first 3D structure of a modular arachnid toxin, purotoxin-2 (PT2) from the wolf spider Alopecosa marikovskyi (Lycosidae), studied by NMR spectroscopy. PT2 is composed of an N-terminal inhibitor cystine knot (ICK, or knottin) β-structural domain and a C-terminal linear cationic domain. In aqueous solution, the C-terminal fragment is hyper-flexible, whereas the knottin domain is very rigid. In membrane-mimicking environment, the C-terminal domain assumes a stable amphipathic α-helix. This helix effectively tethers the toxin to membranes and serves as a membrane-access and membrane-anchoring device. Sequence analysis reveals that the knottin + α-helix architecture is quite widespread among arachnid toxins, and PT2 is therefore the founding member of a large family of polypeptides with similar structure motifs. Toxins from this family target different membrane receptors such as P2X in the case of PT2 and calcium channels, but their mechanism of action through membrane access may be strikingly similar.
Collapse
|
19
|
|