1
|
Hsu TW, Yang CH, Su CJ, Huang YT, Yeh YQ, Liao KF, Lin TC, Shih O, Lee MT, Su AC, Jeng US. Revealing cholesterol effects on PEGylated HSPC liposomes using AF4-MALS and simultaneous small- and wide-angle X-ray scattering. J Appl Crystallogr 2023; 56:988-993. [PMID: 37555211 PMCID: PMC10405602 DOI: 10.1107/s1600576723005393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/16/2023] [Indexed: 08/10/2023] Open
Abstract
Liposome development is of great interest owing to increasing requirements for efficient drug carriers. The structural features and thermal stability of such liposomes are crucial in drug transport and delivery. Reported here are the results of the structural characterization of PEGylated liposomes via small- and wide-angle X-ray scattering and an asymmetric flow field-flow fractionation (AF4) system coupled with differential refractive-index detection, multi-angle light scattering (MALS) and dynamic light scattering. This integrated analysis of the exemplar PEGylated liposome formed from hydrogenated soy phosphatid-yl-choline (HSPC) with the addition of cholesterol reveals an average hydro-dynamic radius (R h) of 52 nm with 10% polydispersity, a comparable radius of gyration (R g) and a major liposome particle mass of 118 kDa. The local bilayer structure of the liposome is found to have asymmetric electronic density profiles in the inner and outer leaflets, sandwiched by two PEGylated outer layers ca 5 nm thick. Cholesterol was found to effectively intervene in lipid chain packing, resulting in the thickening of the liposome bilayer, an increase in the area per lipid and an increase in liposome size, especially in the fluid phase of the liposome. These cholesterol effects show signs of saturation at cholesterol concentrations above ca 1:5 cholesterol:lipid molar ratio.
Collapse
Affiliation(s)
- Ting-Wei Hsu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Ching-Hsun Yang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Yin-Tzu Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Tien-Chang Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
- Department of Physics, National Central University, Zhongli 320317, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300094, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Seneviratne R, Coates G, Xu Z, Cornell CE, Thompson RF, Sadeghpour A, Maskell DP, Jeuken LJC, Rappolt M, Beales PA. High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206267. [PMID: 36866488 DOI: 10.1002/smll.202206267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.
Collapse
Affiliation(s)
- Rashmi Seneviratne
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georgina Coates
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Zexi Xu
- School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Caitlin E Cornell
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Rebecca F Thompson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Strandberg E, Wadhwani P, Bürck J, Anders P, Mink C, van den Berg J, Ciriello RAM, Melo MN, Castanho MARB, Bardají E, Ulmschneider JP, Ulrich AS. Temperature-Dependent Re-alignment of the Short Multifunctional Peptide BP100 in Membranes Revealed by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Chembiochem 2023; 24:e202200602. [PMID: 36454659 DOI: 10.1002/cbic.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/02/2022]
Abstract
BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Patrick Anders
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Mink
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Present address: Syngenta Crop Protection AG, 4333, Münchwilen, Switzerland
| | - Jonas van den Berg
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Raffaele A M Ciriello
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Manuel N Melo
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.,Present address: ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Eduard Bardají
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Grimsey E, Collis DWP, Mikut R, Hilpert K. The effect of lipidation and glycosylation on short cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183195. [PMID: 32130974 DOI: 10.1016/j.bbamem.2020.183195] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
The global health threat surrounding bacterial resistance has resulted in antibiotic researchers shifting their focus away from 'traditional' antibiotics and concentrating on other antimicrobial agents, including antimicrobial peptides. These low molecular weight "mini-proteins" exhibit broad-spectrum activity against bacteria, including multi-drug resistant strains, viruses, fungi and protozoa and constitute a major element of the innate-immune system of many multicellular organisms. Some naturally occurring antimicrobial peptides are lipidated and/or glycosylated and almost all antimicrobial peptides in clinical use are either lipopeptides (Daptomycin and Polymyxin E and B) or glycopeptides (Vancomycin). Lipidation, glycosylation and PEGylation are an option for improving stability and activity in serum and for reducing the rapid clearing via the kidneys and liver. Two broad-spectrum antimicrobial peptides NH2-RIRIRWIIR-CONH2 (A1) and NH2-KRRVRWIIW-CONH2 (B1) were conjugated via a linker, producing A2 and B2, to individual fatty acids of C8, C10, C12 and C14 and in addition, A2 was conjugated to either glucose, N-acetyl glucosamine, galactose, mannose, lactose or polyethylene glycol (PEG). Antimicrobial activity against two Gram-positive strains (methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecalis (VRE)) and three Gram-negative strains (Salmonella typhimurium, E. coli and Pseudomonas aeruginosa) were determined. Activity patterns for the lipidated versions are very complex, dependent on sequence, bacteria and fatty acid. Two reciprocal effects were measured; compared to the parental peptides, some combinations led to a 16-fold improvement whereas other combinations let to a 32-fold reduction in antimicrobial activity. Glycosylation decreased antimicrobial activity by 2 to 16-fold in comparison to A1, respectively on the sugar-peptide combination. PEGylation rendered the peptide inactive. Antimicrobial activity in the presence of 25% human serum of A1 and B1 was reduced 32-fold and 8-fold, respectively. The longer chain fatty acids almost completely restored this activity; however, these fatty acids increased hemolytic activity. B1 modified with C8 increased the therapeutic index by 2-fold for four bacterial strains. Our results suggest that finding the right lipid-peptide combination can lead to improved activity in the presence of serum and potentially more effective drug candidates for animal studies. Glycosylation with the optimal sugar and numbers of sugars at the right peptide position could be an alternative route or could be used in addition to lipidation to counteract solubility and toxicity issues.
Collapse
Affiliation(s)
- Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | | | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI), Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| |
Collapse
|
5
|
Devanand T, Krishnaswamy S, Vemparala S. Interdigitation of Lipids Induced by Membrane–Active Proteins. J Membr Biol 2019; 252:331-342. [DOI: 10.1007/s00232-019-00072-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
|
6
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
7
|
Shih O, Yeh YQ, Liao KF, Su CJ, Wu PH, Heenan RK, Yu TY, Jeng US. Membrane Charging and Swelling upon Calcium Adsorption as Revealed by Phospholipid Nanodiscs. J Phys Chem Lett 2018; 9:4287-4293. [PMID: 29999328 DOI: 10.1021/acs.jpclett.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Direct binding of calcium ions (Ca2+) to phospholipid membranes is an unclarified yet critical signaling pathway in diverse Ca2+-regulated cellular phenomena. Here, high-pressure-liquid-chromatography, small-angle X-ray scattering (SAXS), UV-vis absorption, and differential refractive index detections are integrated to probe Ca2+-binding to the zwitterionic lipid membranes in nanodiscs. The responses of the membranes upon Ca2+-binding, in composition and conformation, are quantified through integrated data analysis. The results indicate that Ca2+ binds specifically into the phospholipid headgroup zone, resulting in membrane charging and membrane swelling, with a saturated Ca2+-lipid binding ratio of 1:8. A Ca2+-binding isotherm to the nanodisc is further established and yields an unexpectedly high binding constant K = 4260 M-1 and a leaflet potential of ca. 100 mV based on a modified Gouy-Chapman model. The calcium-lipid binding ratio, however, drops to 40% when the nanodisc undergoes a gel-to-fluid phase transition, leading to an effective charge capacity of a few μF/cm2.
Collapse
Affiliation(s)
- Orion Shih
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 10617 , Taiwan
| | - Richard K Heenan
- STFC ISIS Facility , Rutherford-Appleton Laboratory , Building R3 , Didcot , OX11 0QX , U.K
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 10617 , Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
- Department of Chemical Engineering , National Tsing Hua University , Hsinchu 30013 , Taiwan
| |
Collapse
|
8
|
Hsieh MH, Huang PT, Liou HH, Liang PH, Chen PM, Holt SA, Yu IF, James M, Shiau YS, Lee MT, Lin TL, Lou KL. The Penetration Depth for Hanatoxin Partitioning into the Membrane Hydrocarbon Core Measured with Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9036-9046. [PMID: 29986585 DOI: 10.1021/acs.langmuir.8b01076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hanatoxin (HaTx) from spider venom works as an inhibitor of Kv2.1 channels, most likely by interacting with the voltage sensor (VS). However, the way in which this water-soluble peptide modifies the gating remains poorly understood as the VS is deeply embedded within the bilayer, although it would change its position depending on the membrane potential. To determine whether HaTx can indeed bind to the VS, the depth at which HaTx penetrates into the POPC membranes was measured with neutron reflectivity. Our results successfully demonstrate that HaTx penetrates into the membrane hydrocarbon core (∼9 Å from the membrane surface), not lying on the membrane-water interface as reported for another voltage sensor toxin (VSTx). This difference in penetration depth suggests that the two toxins fix the voltage sensors at different positions with respect to the membrane normal, thereby explaining their different inhibitory effects on the channels. In particular, results from MD simulations constrained by our penetration data clearly demonstrate an appropriate orientation for HaTx to interact with the membranes, which is in line with the biochemical information derived from stopped-flow analysis through delineation of the toxin-VS binding interface.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| | - Horng-Huei Liou
- Division of Neurology , National Taiwan University Hospital , Taipei 10002 , Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Pei-Ming Chen
- Department of Electrical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Stephen A Holt
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
| | - Isaac Furay Yu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Michael James
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
- The Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
- Department of Physics , National Central University , Jhongli 32001 , Taiwan
| | - Tsang-Lang Lin
- Department of Engineering and System Science , National Tsing-Hua University , Hsinchu 30013 , Taiwan
| | - Kuo-Long Lou
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| |
Collapse
|
9
|
Gerbelli BB, da Silva ER, Miranda Soares B, Alves WA, Andreoli de Oliveira E. Multilamellar-to-Unilamellar Transition Induced by Diphenylalanine in Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2171-2179. [PMID: 29284081 DOI: 10.1021/acs.langmuir.7b03869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present work, we investigate the effect of two short phenylalanine-based peptides on lipid membranes. A simplified model membrane composed of lecithin vesicles was used to incorporate different amounts of the two amino acid sequences, the dimmer l,l-diphenylallanine (FF) and the trimmer cysteine-diphenylallanine (CFF). Spectroscopic and scattering techniques were applied to probe in detail the structural behavior of lipid membranes in the presence of the peptides. The experimental results demonstrate that both peptides are located mainly at the interface of the membrane interacting with phosphate groups modifying membrane thickness and flexibility. The multilamellar structure of the vesicles is preserved with inclusion of small amounts of FF, accompanied by changes in membrane thickness and elasticity. Finally, a multi- to unilamellar transition is observed as a result of peptide self-association into a crystalline structure onto the membrane interface.
Collapse
Affiliation(s)
| | | | - Bruna Miranda Soares
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-580, Brazil
| | - Wendel Andrade Alves
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-580, Brazil
| | | |
Collapse
|
10
|
Lee MT. Biophysical characterization of peptide–membrane interactions. ADVANCES IN PHYSICS: X 2018. [DOI: 10.1080/23746149.2017.1408428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Central University, Jhongli, Taiwan
| |
Collapse
|
11
|
Su CJ, Lee MT, Liao KF, Shih O, Jeng US. Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning. Phys Chem Chem Phys 2018; 20:26830-26836. [DOI: 10.1039/c8cp02861c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Melittin binding affinity enhances linearly with the membrane thermal thinning rate of the three phosphocholine-based ULVs of diCn:1PC.
Collapse
Affiliation(s)
- Chun-Jen Su
- National Synchrotron Radiation Research Center
- Hsinchu Science Park
- Hsinchu 30076
- Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center
- Hsinchu Science Park
- Hsinchu 30076
- Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center
- Hsinchu Science Park
- Hsinchu 30076
- Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center
- Hsinchu Science Park
- Hsinchu 30076
- Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center
- Hsinchu Science Park
- Hsinchu 30076
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|
12
|
Sharma VK, Mamontov E, Tyagi M, Qian S, Rai DK, Urban VS. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration. J Phys Chem Lett 2016; 7:2394-401. [PMID: 27232190 DOI: 10.1021/acs.jpclett.6b01006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.
Collapse
Affiliation(s)
- V K Sharma
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai 400085, India
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - M Tyagi
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - S Qian
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - D K Rai
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - V S Urban
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Sharma VK, Mamontov E, Anunciado DB, O'Neill H, Urban VS. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer. SOFT MATTER 2015. [PMID: 26212615 DOI: 10.1039/c5sm01562f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fall in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol% melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Their importance lies in the fact that many membrane processes, including signaling and energy transduction pathways, are controlled to a great extent by the lateral diffusion of lipids in the membrane. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol% cholesterol. Our measurements indicate that the destabilizing effect of the peptide melittin on membranes can be mitigated by the presence of cholesterol. This study might provide new insights into the mechanism of action of antimicrobial peptides and their selective toxicity towards foreign microorganisms.
Collapse
Affiliation(s)
- V K Sharma
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
14
|
Baroni D, Zegarra-Moran O, Svensson A, Moran O. Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:341-6. [PMID: 24771136 DOI: 10.1007/s00249-014-0956-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, CNR, via De Marini, 6, 16149, Genoa, Italy
| | | | | | | |
Collapse
|