1
|
Qian S, Nagy G, Zolnierczuk P, Mamontov E, Standaert R. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes. J Phys Chem Lett 2024; 15:4745-4752. [PMID: 38661394 DOI: 10.1021/acs.jpclett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Gergely Nagy
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| | - Robert Standaert
- Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Bryant SJ, Garvey CJ, Darwish TA, Georgii R, Bryant G. Molecular interactions with bilayer membrane stacks using neutron and X-ray diffraction. Adv Colloid Interface Sci 2024; 326:103134. [PMID: 38518550 DOI: 10.1016/j.cis.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Faculty of Science and Technology, University of Canberra, ACT 2617, Australia
| | - Robert Georgii
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia.
| |
Collapse
|
3
|
Ouyang J, Sheng Y, Wang W. Recent Advances of Studies on Cell-Penetrating Peptides Based on Molecular Dynamics Simulations. Cells 2022; 11:cells11244016. [PMID: 36552778 PMCID: PMC9776715 DOI: 10.3390/cells11244016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
With the ability to transport cargo molecules across cell membranes with low toxicity, cell-penetrating peptides (CPPs) have become promising candidates for next generation peptide-based drug delivery vectors. Over the past three decades since the first CPP was discovered, a great deal of work has been done on the cellular uptake mechanisms and the applications for the delivery of therapeutic molecules, and significant advances have been made. But so far, we still do not have a precise and unified understanding of the structure-activity relationship of the CPPs. Molecular dynamics (MD) simulations provide a method to reveal peptide-membrane interactions at the atomistic level and have become an effective complement to experiments. In this paper, we review the progress of the MD simulations on CPP-membrane interactions, including the computational methods and technical improvements in the MD simulations, the research achievements in the CPP internalization mechanism, CPP decoration and coupling, and the peptide-induced membrane reactions during the penetration process, as well as the comparison of simulated and experimental results.
Collapse
Affiliation(s)
- Jun Ouyang
- School of Public Courses, Bengbu Medical College, Bengbu 233030, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- High Performance Computing Center, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| |
Collapse
|
4
|
Polli JR, Balthasar JP. Cell Penetrating Peptides Conjugated to Anti-Carcinoembryonic Antigen "Catch-and-Release" Monoclonal Antibodies Alter Plasma and Tissue Pharmacokinetics in Colorectal Cancer Xenograft Mice. Bioconjug Chem 2022; 33:1456-1466. [PMID: 35867869 DOI: 10.1021/acs.bioconjchem.2c00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell penetrating peptides conjugated to delivery vehicles, such as nanoparticles or antibodies, can enhance the cytosolic delivery of macromolecules. The present study examines the effects of conjugation to cell penetrating and endosomal escape peptides (i.e., TAT, GALA, and H6CM18) on the pharmacokinetics and distribution of an anti-carcinoembryonic antigen "catch-and-release" monoclonal antibody, 10H6, in a murine model of colorectal cancer. GALA and TAT were conjugated to 10H6 using SoluLINK technology that allowed the evaluation of peptide-to-antibody ratio by ultraviolet spectroscopy. H6CM18 was conjugated to either NHS or maleimide-modified 10H6 using an azide-modified valine-citrulline linker and copper-free click chemistry. Unmodified and peptide-conjugated 10H6 preparations were administered intravenously at 6.67 nmol/kg to mice-bearing MC38CEA+ tumors. Unconjugated 10H6 demonstrated a clearance of 19.9 ± 1.36 mL/day/kg, with an apparent volume of distribution of 62.4 ± 7.78 mL/kg. All antibody-peptide conjugates exhibited significantly decreased plasma and tissue exposure, increased plasma clearance, and increased distribution volume. Examination of tissue-to-plasma exposure ratios showed an enhanced selectivity of 10H6-TAT for the GI tract (+25%), kidney (+24%), liver (+38%), muscle (+3%), and spleen (+33%). 10H6-GALA and 10H6-H6CM18 conjugates demonstrated decreased exposure in all tissues, relative to unmodified 10H6. All conjugates demonstrated decreased tumor exposure and selectivity; however, differences in tumor selectivity between 10H6 and 10H6-H6CM18 (maleimide) were not statistically significant. Relationships between the predicted peptide conjugate isoelectric point (pI) and pharmacokinetic parameters were bell-shaped, where pI values around 6.8-7 exhibit the slowest plasma clearance and smallest distribution volume. The data and analyses presented in this work may guide future efforts to develop immunoconjugates with cell penetrating and endosomal escape peptides.
Collapse
Affiliation(s)
- Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215, United States
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14215, United States
| |
Collapse
|
5
|
Qian S, Zolnierczuk PA. Interaction of a Short Antimicrobial Peptide on Charged Lipid Bilayer: A Case Study on Aurein 1.2 Peptide. BBA ADVANCES 2022; 2:100045. [PMID: 37082600 PMCID: PMC10074906 DOI: 10.1016/j.bbadva.2022.100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Aurein 1.2 (aurein) is a short but active α-helical antimicrobial peptide discovered in Australian tree frogs (Litoria aurea). It shows inhibition on a broad spectrum of bacteria and cancer cells. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how aurein interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like many other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. Combining our previous studies, the evidence shows that aurein at relatively low concentrations still modifies lipid distribution significantly and can cause membrane thinning and lateral segregation of charged lipids. At the same time, the membrane's mechanical properties are modified with much slower lipid diffusion. This suggests that aurein can attack the microbial membrane without the need to form membrane pores or disintegrate membranes; instead, it promotes the formation of domains at low concentration.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Corresponding author.
| | - Piotr A. Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
6
|
Segan D, Stanley G, Messina P, Swiecicki J, Ngo K, Vivier V, Buriez O, Labbé E. Interaction of Redox Probes and Ferrocene‐labelled Peptides with Lipid Bilayers Observed at Lipid Bilayer‐Modified Electrodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dejan Segan
- PASTEUR Département de chimie École Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - George Stanley
- Laboratoire des biomolécules (LBM) Département de chimie École Normale supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Pierluca Messina
- PASTEUR Département de chimie École Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Jean‐Marie Swiecicki
- Laboratoire des biomolécules (LBM) Département de chimie École Normale supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Kieu Ngo
- Laboratoire Interfaces et Systèmes Électrochimiques (LISE) Sorbonne Université CNRS 75005 Paris France
| | - Vincent Vivier
- Laboratoire Interfaces et Systèmes Électrochimiques (LISE) Sorbonne Université CNRS 75005 Paris France
| | - Olivier Buriez
- PASTEUR Département de chimie École Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Eric Labbé
- PASTEUR Département de chimie École Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| |
Collapse
|
7
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
8
|
Huo S, Chen C, Lyu Z, Zhang S, Wang Y, Nie B, Yue B. Overcoming Planktonic and Intracellular Staphylococcus aureus-Associated Infection with a Cell-Penetrating Peptide-Conjugated Antimicrobial Peptide. ACS Infect Dis 2020; 6:3147-3162. [PMID: 33236626 DOI: 10.1021/acsinfecdis.0c00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a primary pathogen responsible for causing postoperative infections as it survives and persists in host cells, including osteoblasts and macrophages. These cells then serve as reservoirs resulting in chronic infections. Most traditional antibiotics have poor effects on intracellular S. aureus because they cannot enter the cell. Herein, a cell-penetrating peptide TAT-KR-12 was derived from the trans-activating transcription (TAT) peptide and KR-12 (residues 18-29 of human cathelicidin LL-37). The TAT acts as a "trojan horse" to deliver KR-12 peptide into the cells to kill S. aureus. Moreover, effective antibacterial properties and biocompatibility were observed in vitro, demonstrating that TAT-KR-12 is effective not only in eliminating planktonic S. aureus, but also in eliminating intracellular S. aureus cells in vitro. TAT-KR-12, as with LL-37, also elicits strong anti-inflammatory activities in LPS-stimulated macrophages, as demonstrated by significant inhibition of NO, TNF-α, and IL-1β expression and secretion from LPS-stimulated RAW264.7 cells. In the subcutaneous infection mouse model of planktonic and intracellular infections, the growth of S. aureus in vivo is evidently inhibited without cytotoxicity. These results suggest that the novel antimicrobial TAT-KR-12 may prove to be an effective treatment option to overcome antibiotic resistance caused by intracellular bacterial infections.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| |
Collapse
|
9
|
High-resolution view of the type III secretion export apparatus in situ reveals membrane remodeling and a secretion pathway. Proc Natl Acad Sci U S A 2019; 116:24786-24795. [PMID: 31744874 DOI: 10.1073/pnas.1916331116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type III protein secretion systems are essential virulence factors for many important pathogenic bacteria. The entire protein secretion machine is composed of several substructures that organize into a holostructure or injectisome. The core component of the injectisome is the needle complex, which houses the export apparatus that serves as a gate for the passage of the secreted proteins through the bacterial inner membrane. Here, we describe a high-resolution structure of the export apparatus of the Salmonella type III secretion system in association with the needle complex and the underlying bacterial membrane, both in isolation and in situ. We show the precise location of the core export apparatus components within the injectisome and bacterial envelope and demonstrate that their deployment results in major membrane remodeling and thinning, which may be central for the protein translocation process. We also show that InvA, a critical export apparatus component, forms a multiring cytoplasmic conduit that provides a pathway for the type III secretion substrates to reach the entrance of the export gate. Combined with structure-guided mutagenesis, our studies provide major insight into potential mechanisms of protein translocation and injectisome assembly.
Collapse
|
10
|
Costa D, Albuquerque T, Queiroz JA, Valente AJM. A co-delivery platform based on plasmid DNA peptide-surfactant complexes: formation, characterization and release behavior. Colloids Surf B Biointerfaces 2019; 178:430-438. [PMID: 30908999 DOI: 10.1016/j.colsurfb.2019.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
The development of delivery systems based on cell penetrating peptides represents an incredible asset and may deeply contribute for the evolution of therapies efficacy. In this context, we explore the plasmid DNA (pDNA) condensation ability of TAT peptide to produce a suitable intracellular delivery platform. The nanoparticles were formed at various ratios of nitrogen to phosphate groups (N/P) and the variation of polyplexes properties with this parameter was studied. Beyond the large size exhibited by these carriers, their low pDNA immobilization profile instigates the need for an additional compacting agent. To maximize the performance of this peptide delivery system, a series of alkyl trimethyl ammonium bromide surfactants (CnTAB) were employed to further condense pDNA. In general, not only this strategy promotes the formation of lower sized vectors, but also greatly enhances particle characteristics such as surface charge and pDNA encapsulation. The magnitude of this effect is intimately dependent on surfactant chain length. Furthermore, the known cytotoxicity of cationic surfactants has been dramatically reduced by their incorporation into TAT/pDNA complexes. The release kinetics can be tailored and optimized to promote the controlled/sustained release of pDNA. Following this, the surfactant alkyl chain length and the N/P ratio are important controlling parameters. In addition, doxorubicin and paclitaxel can be efficiently loaded and encapsulated into peptide/pDNA/surfactant carriers. The presented platform reveals a great potential for therapeutic payloads loading and controlled release open advanced and new approaches in the design/formulation of innovative biomedical systems towards clinical translation.
Collapse
Affiliation(s)
- Diana Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Tânia Albuquerque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Artur J M Valente
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
11
|
Ohgita T, Takechi-Haraya Y, Nadai R, Kotani M, Tamura Y, Nishikiori K, Nishitsuji K, Uchimura K, Hasegawa K, Sakai-Kato K, Akaji K, Saito H. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:541-549. [DOI: 10.1016/j.bbamem.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/17/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022]
|
12
|
Lv M, Wang M, Lu K, Peng L, Zhao Y. DNA/Lysozyme-binding affinity study of novel peptides from TAT (47-57) and BRCA1 (782-786) in vitro by spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:109-117. [PMID: 30384016 DOI: 10.1016/j.saa.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
SISLL-TAT and TAT-SISLL were synthesized by modifying the N- or C-termini of cell-penetrating peptides as transacting activator of transcription TAT (47-57) by attaching BRCA1 (782-786) (SISLL). The novel peptides were synthesized through Fmoc solid-phase synthesis procedures and characterized by LCQ Fleet MS, 1H NMR and 13C NMR. SISLL-TAT and TAT-SISLL displayed forceful antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhimurium with low hemolysis. SISLL-TAT showed better antibacterial activity than TAT-SISLL, with the minimum inhibitory concentration (MIC) values of 10-33 μg·mL-1. The results of the DNA-binding activities showed that both SISLL-TAT and TAT-SISLL could interact with DNA via the minor groove mode, and the binding constants were 4.97 × 105 L·mol-1 and 4.42 × 105 L·mol-1 at 310 K, respectively. Circular dichroism analysis showed slight transformation of the lysozyme secondary structure caused by SISLL-TAT and TAT-SISLL. We also found that the novel peptides SISLL-TAT and TAT-SISLL targeted bacterial DNA resulting in cell death. This explains the antibacterial mechanism of SISLL-TAT and TAT-SISLL, and is a solid theoretical basis for further designing novel and highly effective antibiotics for clinical application.
Collapse
Affiliation(s)
- Mingxiu Lv
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwei Wang
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, Henan, China.
| | - Lu Peng
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
13
|
Yoo DY, Cho SB, Jung HY, Kim W, Lee KY, Kim JW, Moon SM, Won MH, Choi JH, Yoon YS, Kim DW, Choi SY, Hwang IK. Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress. Neurochem Int 2018; 122:19-30. [PMID: 30399388 DOI: 10.1016/j.neuint.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Abstract
Ischemia causes oxidative stress in the endoplasmic reticulum (ER), accelerates the accumulation of unfolded and misfolded proteins, and may ultimately lead to neuronal cell apoptosis. In the present study, we investigated the effects of protein disulfide-isomerase A3 (PDIA3), an ER-resident chaperone that catalyzes disulfide-bond formation in a subset of glycoproteins, against oxidative damage in the hypoxic HT22 cell line and against ischemic damage in the gerbil hippocampus. We also confirmed the neuroprotective effects of PDIA3 by using PDIA3-knockout HAP1 cells. The HT22 and HAP1 cell lines showed effective (dose-dependent and time-dependent) penetration and stable expression of the Tat-PDIA3 fusion protein 24 h after Tat-PDIA3 treatment compared to that in the control-PDIA3-treated group. We observed that the fluorescence for both 2',7'-dichlorofluorescein diacetate (DCF-DA) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), which are markers for the formation of hydrogen peroxide (H2O2)-induced reactive oxygen species and apoptosis, respectively, was higher in HAP1 cells than in HT22 cells. The administration of Tat-PDIA3 significantly reduced the (1) DCF-DA and TUNEL fluorescence in HT22 and HAP1 cells, (2) ischemia-induced hyperactivity that was observed 1 day after ischemia/reperfusion, (3) ischemia-induced neuronal damage and glial (astrocytes and microglia) activation that was observed in the hippocampal CA1 region 4 days after ischemia/reperfusion, and (4) lipid peroxidation and nitric oxide generation in the hippocampal homogenates 3-12 h after ischemia/reperfusion. Transient forebrain ischemia significantly elevated the immunoglobulin-binding protein (BiP) and C/EBP-homologous protein (CHOP) mRNA levels in the hippocampus at 12 h and 4 days after ischemia, relative to those in the time-matched sham-operated group. Administration of Tat-PDIA3 ameliorated the ischemia-induced upregulation of BiP mRNA levels versus the Tat peptide- or control-PDIA3-treated groups, and significantly reduced the induction of CHOP mRNA levels, at 12 h or 4 days after ischemia. Collectively, these results suggest that Tat-PDIA3 acts as a neuroprotective agent against ischemia by attenuating oxidative damage and blocking the apoptotic pathway that is related to the unfolded protein response in the ER.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea; Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, 31151, South Korea
| | - Su Bin Cho
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
15
|
Non-covalent interaction between CA–TAT and calf thymus DNA: Deciphering the binding mode by in vitro studies. Int J Biol Macromol 2018; 114:1354-1360. [DOI: 10.1016/j.ijbiomac.2017.11.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 11/20/2022]
|
16
|
Abstract
This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse X-ray scattering, which yields the bending modulus, KC, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: 1) infection, 2) Tat membrane transport, and 3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): 1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, 2) CRAC (cholesterol recognition amino acid consensus sequence), on the MPER (membrane proximal external region) near the membrane-spanning domain, and 3) LLP2 (lentiviral lytic peptide 2) on the CTT (cytoplasmic C-terminal tail). For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides' effects.
Collapse
|
17
|
Chen X, Chen J, Fu R, Rao P, Weller R, Bradshaw J, Liu S. Can the Cellular Internalization of Cargo Proteins Be Enhanced by Fusing a Tat Peptide in the Center of Proteins? A Fluorescence Study. J Pharm Sci 2018; 107:879-886. [DOI: 10.1016/j.xphs.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
|
18
|
Chen X, Liu S, Deme B, Cristiglio V, Marquardt D, Weller R, Rao P, Wang Y, Bradshaw J. Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:910-916. [PMID: 28153495 DOI: 10.1016/j.bbamem.2017.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 11/19/2022]
Abstract
The aim of this study is to investigate the interactions between TAT peptides and a neutral DOPC bilayer by using neutron lamellar diffraction. The distribution of TAT peptides and the perturbation of water distribution across the DOPC bilayer were revealed. When compared to our previous study on an anionic DOPC/DOPS bilayer (X. Chen et al., Biochim Biophys Acta. 2013. 1828 (8), 1982-1988), a much deeper insertion of TAT peptides was found in the hydrophobic core of DOPC bilayer at a depth of 6.0Å from the center of the bilayer, a position close to the double bond of fatty acyl chain. We conclude that the electrostatic attractions between the positively charged TAT peptides and the negatively charged headgroups of phospholipid are not essential for the direct translocation. Furthermore, the interactions of TAT peptides with the DOPC bilayer were found to vary in a concentration-dependent manner. A limited number of peptides first associate with the phosphate moieties on the lipid headgroups by using the guanidinium ions pairing. Then the energetically favorable water defect structures are adopted to maintain the arginine residues hydrated by drawing water molecules and lipid headgroups into the bilayer core. Such bilayer deformations consequently lead to the deep intercalation of TAT peptides into the bilayer core. Once a threshold concentration of TAT peptide in the bilayer is reached, a significant rearrangement of bilayer will happen and steady-state water pores will form.
Collapse
Affiliation(s)
- Xiaochao Chen
- College of Biological Science and Biotechnology, Fuzhou University, 2 Xue Yuan Road, University Town, 350116 Fuzhou, Fujian, PR China.; The University of Edinburgh, Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Shutao Liu
- College of Biological Science and Biotechnology, Fuzhou University, 2 Xue Yuan Road, University Town, 350116 Fuzhou, Fujian, PR China
| | - Bruno Deme
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9, France
| | - Viviana Cristiglio
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9, France
| | - Drew Marquardt
- Canadian Neutron Beam Centre, National Research Council, Chalk River, ON K0J 1P0, Canada
| | - Richard Weller
- The University of Edinburgh, Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Pingfan Rao
- College of Biological Science and Biotechnology, Fuzhou University, 2 Xue Yuan Road, University Town, 350116 Fuzhou, Fujian, PR China
| | - Yunqiang Wang
- College of Biological Science and Biotechnology, Fuzhou University, 2 Xue Yuan Road, University Town, 350116 Fuzhou, Fujian, PR China
| | - Jeremy Bradshaw
- The University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom.
| |
Collapse
|
19
|
Hu Y, Patel S. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids. SOFT MATTER 2016; 12:6716-6727. [PMID: 27435187 DOI: 10.1039/c5sm01696g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient delivery of pharmaceutically active molecules across cellular membranes using cell penetrating peptides (CPPs), such as the cationic human immunodeficiency virus-1 trans-acting activator of transcription peptide (HIV-1 TAT), continues to attract scientific attention in drug design and disease treatment. Experimental results show that the TAT peptide is not only capable of directly penetrating the biological membrane in a passive manner, but also forming physical, membrane-spanning pores that may facilitate transport. Experiments further show that anionic lipids accelerate peptide permeation within a range of mole percentage composition. In this work, we explored the structures and translocation thermodynamics of the cationic TAT peptide across a series of DPPC/DPPS model membranes with the presence of 0-30 mol% cholesterol. We computed the potentials of the mean force by using umbrella sampling molecular dynamics simulations coupled to the Martini coarse-grained force field. We systematically investigated the roles of cholesterol and anionic lipids (membrane surface charge) in TAT peptide translocation. In qualitative agreement with experimental findings, the barrier heights were significantly reduced in the presence of anionic lipids. A toroidal hydrophilic pore was strongly suggested by membrane structure analysis. Cholesterol stabilizes the liquid-ordered (Lo) phase of membranes and increases the elastic stiffness of bilayers. Consequently, it hinders transmembrane pore formation and thus modulates solute permeability, since the liquid-ordered phase suppresses reorientation of the lipid molecules on simulation time scales. Though cholesterol contributes marginally to the total free energy associated with peptide permeation, the coordination of cholesterol to the peptide weakens more favorable peptide-lipid interactions. The addition of the anionic lipid DPPS to the neutral DPPC bilayer leads to the emergence and further enhancement of an interfacially stable state of the peptide due to the favorable peptide-anionic lipid interactions. Translocation free energy barriers decrease in lockstep with increasing DPPS composition in the model bilayers simulated. Finally, we investigated the size of hydrophilic pores emerging in our simulations, as well as the qualitative mobility of the peptide on the membrane surface.
Collapse
Affiliation(s)
- Yuan Hu
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
20
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
21
|
Neale C, Huang K, García AE, Tristram-Nagle S. Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering. MEMBRANES 2015; 5:473-94. [PMID: 26402709 PMCID: PMC4584291 DOI: 10.3390/membranes5030473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023]
Abstract
The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bilayer form factors derivedfrom X-ray diffuse scattering data as a guide, our simulations indicate that Tat peptides localize close to the carbonyl-glycerol group in the headgroup region of bilayers composed of either DOPC or DOPC:DOPE (1:1) lipid. Our results also suggest that Tat peptides may more frequently insert into the hydrophobic core of bilayers composed of PC:PE (1:1) lipids than into bilayers composed entirely of PC lipids. PE lipids may facilitate peptide translocation across a lipid bilayer by stabilizing intermediate states in which hydrated peptides span the bilayer.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Kun Huang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Angel E García
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Cristiglio V, Giroud B, Didier L, Demé B. D16 is back to business: more neutrons, more space, more fun. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/10448632.2015.1057051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Song J, Zhang Y, Zhang W, Chen J, Yang X, Ma P, Zhang B, Liu B, Ni J, Wang R. Cell penetrating peptide TAT can kill cancer cells via membrane disruption after attachment of camptothecin. Peptides 2015; 63:143-9. [PMID: 25496911 DOI: 10.1016/j.peptides.2014.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.
Collapse
Affiliation(s)
- Jingjing Song
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jianbo Chen
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Yang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Panpan Ma
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Beijun Liu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Rui Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 2014; 136:17459-67. [PMID: 25405895 PMCID: PMC4277769 DOI: 10.1021/ja507790z] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Guanidinium-rich
molecules, such as cell-penetrating peptides,
efficiently enter living cells in a non-endocytic energy-independent
manner and transport a wide range of cargos, including drugs and biomarkers.
The mechanism by which these highly cationic molecules efficiently
cross the hydrophobic barrier imposed by the plasma membrane remains
a fundamental open question. Here, a combination of computational
results and in vitro and live-cell experimental evidence reveals an
efficient energy-independent translocation mechanism for arginine-rich
molecules. This mechanism unveils the essential role of guanidinium
groups and two universal cell components: fatty acids and the cell
membrane pH gradient. Deprotonated fatty acids in contact with the
cell exterior interact with guanidinium groups, leading to a transient
membrane channel that facilitates the transport of arginine-rich peptides
toward the cell interior. On the cytosolic side, the fatty acids become
protonated, releasing the peptides and resealing the channel. This
fundamental mechanism appears to be universal across cells from different
species and kingdoms.
Collapse
Affiliation(s)
- Henry D Herce
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
25
|
Piantavigna S, Abdelhamid ME, Zhao C, Qu X, McCubbin GA, Graham B, Spiccia L, O'Mullane AP, Martin LL. Mechanistic Details of the Membrane Perforation and Passive Translocation of TAT Peptides. Chempluschem 2014. [DOI: 10.1002/cplu.201402209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefania Piantavigna
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
| | - Muhammad E. Abdelhamid
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
- School of Applied Sciences, RMIT University, Melbourne VIC 3001 (Australia)
| | - Chuan Zhao
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052 (Australia)
| | - Xiaohu Qu
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
| | - George A. McCubbin
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 (Australia)
| | - Leone Spiccia
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
| | - Anthony P. O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001 (Australia)
| | - Lisandra L. Martin
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia), Fax: (+61) 3‐9905‐4597
| |
Collapse
|
26
|
Hu Y, Sinha SK, Patel S. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. J Phys Chem B 2014; 118:11973-92. [PMID: 25290376 PMCID: PMC4199542 DOI: 10.1021/jp504853t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
27
|
Hu Y, Liu X, Sinha SK, Patel S. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. J Phys Chem B 2014; 118:2670-82. [PMID: 24506488 PMCID: PMC3983342 DOI: 10.1021/jp412600e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Structural mechanisms
and underlying thermodynamic determinants
of efficient internalization of charged cationic peptides (cell-penetrating
peptides, CPPs) such as TAT, polyarginine, and their variants, into
cells, cellular constructs, and model membrane/lipid bilayers (large
and giant unilamellar or multilamelar vesicles) continue to garner
significant attention. Two widely held views on the translocation
mechanism center on endocytotic and nonendocytotic (diffusive) processes.
Espousing the view of a purely diffusive internalization process (supported
by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of
the translocation of a nonaarginine peptide (Arg9) into
a model DPPC bilayer. In the case of the Arg9 cationic
peptide, recent experiments indicate a higher internalization efficiency
of the cyclic structure (cyclic Arg9) relative to the linear
conformer. Furthermore, recent all-atom resolution molecular dynamics
simulations of cyclic Arg9 [Huang, K.; et al. Biophys.
J., 2013, 104, 412–420]
suggested a critical stabilizing role of water- and lipid-constituted
pores that form within the bilayer as the charged Arg9 translocates
deep into the bilayer center. Herein, we use umbrella sampling molecular
dynamics simulations with coarse-grained Martini lipids, polarizable
coarse-grained water, and peptide to explore the dependence of translocation
free energetics on peptide structure and conformation via calculation
of potentials of mean force along preselected reaction paths allowing
and preventing membrane deformations that lead to pore formation.
Within the context of the coarse-grained force fields we employ, we
observe significant barriers for Arg9 translocation from
bulk aqueous solution to bilayer center. Moreover, we do not find
free-energy minima in the headgroup–water interfacial region,
as observed in simulations using all-atom force fields. The pore-forming
paths systematically predict lower free-energy barriers (ca. 90 kJ/mol
lower) than the non pore-forming paths, again consistent with all-atom
force field simulations. The current force field suggests no preference
for the more compact or covalently cyclic structures upon entering
the bilayer. Decomposition of the PMF into the system’s components
indicates that the dominant stabilizing contribution along the pore-forming
path originates from the membrane as both layers of it deformed due
to the formation of pore. Furthermore, our analysis revealed that
although there is significant entropic stabilization arising from
the enhanced configurational entropy exposing more states as the peptide
moves through the bilayer, the enthalpic loss (as predicted by the
interactions of this coarse-grained model) far outweighs any former
stabilization, thus leading to significant barrier to translocation.
Finally, we observe reduction in the translocation free-energy barrier
for a second Arg9 entering the bilayer in the presence
of an initial peptide restrained at the center, again, in qualitative
agreement with all-atom force fields.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , 238 Brown Laboratory, Newark, Delaware 19716, United States
| | | | | | | |
Collapse
|
28
|
Sun D, Forsman J, Lund M, Woodward CE. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study. Phys Chem Chem Phys 2014; 16:20785-95. [DOI: 10.1039/c4cp02211d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular simulations show that arginine-rich peptides can stabilize transient membrane pores induced by lipid flip-flop.
Collapse
Affiliation(s)
- Delin Sun
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Canberra ACT 2600, Australia
| | - Jan Forsman
- Theoretical Chemistry
- Chemical Centre
- Lund University
- S-221 00 Lund, Sweden
| | - Mikael Lund
- Theoretical Chemistry
- Chemical Centre
- Lund University
- S-221 00 Lund, Sweden
| | - Clifford E. Woodward
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Canberra ACT 2600, Australia
| |
Collapse
|