1
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
2
|
Matos B, Gomes AAS, Bernardino R, Alves MG, Howl J, Jerónimo C, Fardilha M. CAVPENET Peptide Inhibits Prostate Cancer Cells Proliferation and Migration through PP1γ-Dependent Inhibition of AKT Signaling. Pharmaceutics 2024; 16:1199. [PMID: 39339236 PMCID: PMC11434739 DOI: 10.3390/pharmaceutics16091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Protein phosphatase 1 (PP1) complexes have emerged as promising targets for anticancer therapies. The ability of peptides to mimic PP1-docking motifs, and so modulate interactions with regulatory factors, has enabled the creation of highly selective modulators of PP1-dependent cellular processes that promote tumor growth. The major objective of this study was to develop a novel bioactive cell-penetrating peptide (bioportide), which, by mimicking the PP1-binding motif of caveolin-1 (CAV1), would regulate PP1 activity, to hinder prostate cancer (PCa) progression. The designed bioportide, herein designated CAVPENET, and a scrambled homologue, were synthesized using microwave-assisted solid-phase methodologies and evaluated using PCa cell lines. Our findings indicate that CAVPENET successfully entered PCa cells to influence both viability and migration. This tumor suppressor activity of CAVPENET was attributed to inhibition of AKT signaling, a consequence of increased PP1γ activity. This led to the suppression of glycolytic metabolism and alteration in lipid metabolism, collectively representing the primary mechanism responsible for the anticancer properties of CAVPENET. Our results underscore the potential of the designed peptide as a novel therapy for PCa patients, setting the stage for further testing in more advanced models to fully realize its therapeutic promise.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Antoniel A S Gomes
- Department of Biophysics & Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu 18610-034, SP, Brazil
| | - Raquel Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| | - John Howl
- Faculty of Health, Education and Life Sciences, Birmingham City University, Edgbaston, Birmingham B15 3TN, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
4
|
Ji K, Yao Y, Gao Y, Huang S, Ma L, Pan Q, Wu J, Zhang W, Chen H, Zhang L. Evaluating the cytotoxicity mechanism of the cell-penetrating peptide TP10 on Jurkat cells. Biochimie 2024; 221:182-192. [PMID: 37922978 DOI: 10.1016/j.biochi.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
TP10, a classic cell-penetrating peptide, shows a high degree of similarity to AMPs in structure. Although TP10 has been widely used in drug delivery, the mechanism underlying its cytotoxicity is yet to be elucidated. Herein, we explored the cell-killing mechanism of TP10 against human leukemia Jurkat cells. TP10 induced necrosis in Jurkat cells via rapid disruption of cell membranes, particularly at high concentrations. Although mitochondria in Jurkat cells were damaged by TP10, mitochondria-mediated apoptosis did not occur, possibly due to intracellular ATP depletion. Necroptosis in TP10-treated Jurkat cells became an alternative route of apoptosis. Our results demonstrate that necrosis and necroptosis rather than apoptosis are involved in the cell-killing mechanism of TP10, which contributes to the understanding of its toxicity.
Collapse
Affiliation(s)
- Kun Ji
- The First Hospital, The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yufan Yao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuxuan Gao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sujie Huang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ling Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qing Pan
- The First Hospital, The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jun Wu
- The First Hospital, The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wei Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Hongmei Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Lei Zhang
- The First Hospital, The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Kotadiya DD, Patel P, Patel HD. Cell-Penetrating Peptides: A Powerful Tool for Targeted Drug Delivery. Curr Drug Deliv 2024; 21:368-388. [PMID: 37026498 DOI: 10.2174/1567201820666230407092924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 04/08/2023]
Abstract
The cellular membrane hinders the effective delivery of therapeutics to targeted sites. Cellpenetrating peptide (CPP) is one of the best options for rapidly internalizing across the cellular membrane. CPPs have recently attracted lots of attention because of their excellent transduction efficiency and low cytotoxicity. The CPP-cargo complex is an effective and efficient method of delivering several chemotherapeutic agents used to treat various diseases. Additionally, CPP has become another strategy to overcome some of the current therapeutic agents' limitations. However, no CPP complex is approved by the US FDA because of its limitations and issues. In this review, we mainly discuss the cellpenetrating peptide as the delivery vehicle, the cellular uptake mechanism of CPPs, their design, and some strategies to synthesize the CPP complex via some linkers such as disulfide bond, oxime, etc. Here, we also discuss the recent status of CPPs in the market.
Collapse
Affiliation(s)
- Dushyant D Kotadiya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Piyushkumar Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
6
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
7
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
8
|
Tavakoli S, Firoozpour L, Davoodi J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochem Biophys Res Commun 2023; 655:138-144. [PMID: 36934589 DOI: 10.1016/j.bbrc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.
Collapse
Affiliation(s)
- Somayeh Tavakoli
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran.
| |
Collapse
|
9
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
10
|
Lee J, Oh ET, Lee HJ, Lee E, Kim HG, Park HJ, Kim C. Tuning of Peptide Cytotoxicity with Cell Penetrating Motif Activatable by Matrix Metalloproteinase-2. ACS OMEGA 2022; 7:29684-29691. [PMID: 36061651 PMCID: PMC9434767 DOI: 10.1021/acsomega.2c02127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/04/2022] [Indexed: 05/30/2023]
Abstract
Although diverse cell penetrating motifs not only from naturally occurring proteins but also from synthetic peptides have been discovered and developed, the selectivity of cargo delivery connected to these motifs into the desired target cells is generally low. Here, we demonstrate the selective cytotoxicity tuning of an anticancer KLA peptide with a cell penetrating motif activatable by matrix metalloproteinase-2 (MMP2). The anionic masking sequence introduced at the end of the KLA peptide through an MMP2-cleavable linker is selectively cleaved by MMP2 and the cationic cell penetrating motif is activated. Upon treatment of the peptide to H1299 cells (high MMP2 level), it is selectively internalized into the cells by MMP2, which consequently induces membrane disruption and cell death. In contrast, the peptide shows negligible cytotoxicity toward A549 cancer cells with low MMP2 levels. Furthermore, the selective therapeutic efficacy of the peptide induced by MMP2 is also corroborated using in vivo study.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department
of Polymer Science and Engineering, Program in Environmental and Polymer
Engineering, Inha University, Incheon 22212, Korea
| | - Eun-Taex Oh
- Department
of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea
| | - Hae-June Lee
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Eunkyoung Lee
- Department
of Polymer Science and Engineering, Program in Environmental and Polymer
Engineering, Inha University, Incheon 22212, Korea
| | - Ha Gyeong Kim
- Department
of Microbiology, Research Center for Controlling Intracellular Communication,
Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Heon Joo Park
- Department
of Microbiology, Research Center for Controlling Intracellular Communication,
Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Chulhee Kim
- Department
of Polymer Science and Engineering, Program in Environmental and Polymer
Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
11
|
Perfluorocarbon Nanodroplets as Potential Nanocarriers for Brain Delivery Assisted by Focused Ultrasound-Mediated Blood–Brain Barrier Disruption. Pharmaceutics 2022; 14:pharmaceutics14071498. [PMID: 35890391 PMCID: PMC9323719 DOI: 10.3390/pharmaceutics14071498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood–brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood–brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood–brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice’ bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood–brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents.
Collapse
|
12
|
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14071378. [PMID: 35890274 PMCID: PMC9320687 DOI: 10.3390/pharmaceutics14071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Collapse
|
13
|
Kang Z, Wang C, Zhang Z, Liu Q, Zheng Y, Zhao Y, Pan Z, Li Q, Shi L, Liu Y. Spatial Distribution Control of Antimicrobial Peptides through a Novel Polymeric Carrier for Safe and Efficient Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201945. [PMID: 35385590 DOI: 10.1002/adma.202201945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides (AMPs) hold great potential for use in tumor treatment. However, developing AMP-based antitumor therapies is challenging due to circulatory instability, hemolytic toxicity, low selectivity, and poor cell permeability of AMPs. In this study, a polymeric carrier for AMPs (denoted as PAMPm -co-PPBEn /PCA) is presented that effectively enhances their anticancer efficacy while minimizing their potential side effects. By integrating multiple responsive structures at the molecular level, the carrier finely controls the spatial distribution of AMPs in different biological microenvironments, thereby effectively modulating their membranolytic ability. Upon employing KLA as the model AMP, the polymeric carrier's hemolytic toxicity during blood circulation is suppressed, its cellular internalization when reaching tumor tissues facilitated, and its membranolytic toxicity toward the mitochondria upon entering cancer cells restored and further enhanced. Animal studies indicate that this approach significantly improves the antitumor efficacy of KLA and reduces its toxicity. Considering that the loading method for most AMPs is identical to that of KLA, the polymeric carrier reported in this study may provide a feasible approach for the development of AMP-based cancer treatments.
Collapse
Affiliation(s)
- Ziyao Kang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Qi Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yadan Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
15
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
16
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
17
|
Aslam M, Kanthlal SK, Panonummal R. Peptides: A Supercilious Candidate for Activating Intrinsic Apoptosis by Targeting Mitochondrial Membrane Permeability for Cancer Therapy. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10297-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
19
|
Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021; 13:1391. [PMID: 34575464 PMCID: PMC8470549 DOI: 10.3390/pharmaceutics13091391] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse amino acid sequences with the ability to cross cellular membranes. CPPs can deliver several bioactive cargos, including proteins, peptides, nucleic acids and chemotherapeutics, into cells. Ever since their discovery, synthetic and natural CPPs have been utilized in therapeutics delivery, gene editing and cell imaging in fundamental research and clinical experiments. Over the years, CPPs have gained significant attention due to their low cytotoxicity and high transduction efficacy. In the last decade, multiple investigations demonstrated the potential of CPPs as carriers for the delivery of therapeutics to treat various types of cancer. Besides their remarkable efficacy owing to fast and efficient delivery, a crucial benefit of CPP-based cancer treatments is delivering anticancer agents selectively, rather than mediating toxicities toward normal tissues. To obtain a higher therapeutic index and to improve cell and tissue selectivity, CPP-cargo constructions can also be complexed with other agents such as nanocarriers and liposomes to obtain encouraging outcomes. This review summarizes various types of CPPs conjugated to anticancer cargos. Furthermore, we present a brief history of CPP utilization as delivery systems for anticancer agents in the last decade and evaluate several reports on the applications of CPPs in basic research and preclinical studies.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mehdi Tahmasebi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
20
|
Sun P, Scharnweber T, Wadhwani P, Rabe KS, Niemeyer CM. DNA-Directed Assembly of a Cell-Responsive Biohybrid Interface for Cargo Release. SMALL METHODS 2021; 5:e2001049. [PMID: 34927983 DOI: 10.1002/smtd.202001049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/06/2021] [Indexed: 05/24/2023]
Abstract
The development of a DNA-based cell-responsive biohybrid interface that can be used for spatially confined release of molecular cargo is reported. To this end, tailored DNA-protein conjugates are designed as gatekeepers that can be specifically cleaved by matrix metalloproteases (MMPs), which are secreted by many cancer cells. These gatekeepers can be installed by DNA hybridization on the surface of mesoporous silica nanoparticles (MSNs). The MSNs display another orthogonal DNA oligonucleotide that can be exploited for site-selective immobilization on solid glass surfaces to yield micropatterned substrates for cell adhesion. Using the human fibrosarcoma cell line HT1080 that secretes MMPs, it is demonstrated that the biohybrid surface is specifically modified by the cells to release both MSN-bound gatekeeper proteins and the encapsulated cargo peptide KLA. In view of the enormously high modularity of the system presented here, this approach promising for applications in drug delivery, tissue engineering, or other areas of nanobiotechnology is considered.
Collapse
Affiliation(s)
- Pengchao Sun
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute for Biological Interfaces (IBG 2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Ciobanasu C. Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 2021; 29:1063-1079. [PMID: 33775187 DOI: 10.1080/1061186x.2021.1906885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, remarkable progress was registered in the field of cancer research. Though, cancer still represents a major cause of death and cancer metastasis a problem seeking for urgent solutions as it is the main reason for therapeutic failure. Unfortunately, the most common chemotherapeutic agents are non-selective and can damage healthy tissues and cause side effects that affect dramatically the quality of life of the patients. Targeted therapy with molecules that act specifically at the tumour sites interacting with overexpressed cancer receptors is a very promising strategy for achieving the specific delivery of anticancer drugs, radioisotopes or imaging agents. This review aims to give an overview on different strategies for targeting cancer cell receptors localised either at the extracellular matrix or at the cell membrane. Molecules like antibodies, aptamers and peptides targeting the cell surface are presented with advantages and disadvantages, with emphasis on peptides. The most representative peptides are described, including cell penetrating peptides, homing and anticancer peptides with particular consideration on recent discoveries.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Sciences Department, Institute for Interdisciplinary Research, Alexandru I. Cuza University, Iaşi, Romania
| |
Collapse
|
22
|
Sameiyan E, Bagheri E, Dehghani S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater 2021; 123:110-122. [PMID: 33453405 DOI: 10.1016/j.actbio.2020.12.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving "on-demand" therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticles, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.
Collapse
|
23
|
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol Res 2021; 167:105529. [PMID: 33675962 DOI: 10.1016/j.phrs.2021.105529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances in the treatment of colorectal cancer (CRC), low patient survival rate due to emergence of drug resistant cancer cells, metastasis and multiple deleterious side effects of chemotherapy, is a cause of public concern globally. To negate these clinical conundrums, search for effective and harmless novel molecular entities for the treatment of CRC is an urgent necessity. Since antimicrobial peptides (AMPs) are part of innate immunity of living beings, it is quite imperative to look for essential attributes of these peptides which may contribute to their effectiveness against carcinogenesis. Once identified, those characteristics can be suitably modified using several synthetic and computational techniques to further enhance their selectivity and pharmacokinetic profiles. Hence, this review analyses scientific reports describing the antiproliferative action of AMPs derived from several sources, particularly focusing on various colon cancer in vitro/in vivo investigations. On perusal of the literature, it appears that AMPs based therapeutics would definitely find special place in CRC therapy in future either alone or as an adjunct to chemotherapy provided some necessary alterations are made in their natural structures to make them more compatible with modern clinical practice. In this context, further in-depth research is warranted in adequate in vivo models.
Collapse
Affiliation(s)
- Sonia Chauhan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Avneet Saini
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
24
|
Carvalho IC, Mansur AAP, Carvalho SM, Mansur HS. Nanotheranostics through Mitochondria-targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells. Nanotheranostics 2021; 5:213-239. [PMID: 33614399 PMCID: PMC7893535 DOI: 10.7150/ntno.54491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/26/2021] [Indexed: 01/23/2023] Open
Abstract
Overview: Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis. Methods: We designed and produced novel hybrid nanostructures comprising a fluorescent semiconductor core (AgInS2, AIS) and cysteine-modified carboxymethylcellulose (termed thiomer, CMC_Cys) conjugated with mitochondria-targeting peptides (KLA) forming a macromolecular shell for combining bioimaging and for inducing brain cancer cell (U-87 MG) death. Results: The optical and physicochemical properties of the nanoconjugates demonstrated suitability as photoluminescent nanostructures for cell bioimaging and intracellular tracking. Additionally, the results proved a remarkable killing activity towards glioblastoma cells of cysteine-bearing CMC conjugates coupled with KLA peptides through the half-maximal effective concentration values, approximately 70-fold higher compared to the conjugate analogs without Cys residues. Moreover, these thiomer-based pro-apoptotic drug nanoconjugates displayed higher lethality against U-87 MG cancer cells than doxorubicin, a model drug in chemotherapy, although extremely toxic. Remarkably, these peptidomimetic nanohybrids demonstrated a relative "protective effect" regarding healthy cells while maintaining high killing activity towards malignant brain cells. Conclusion: These findings pave the way for developing hybrid nanoarchitectures applied as targeted multifunctional platforms for simultaneous imaging and therapy against cancer while minimizing the high systemic toxicity and side-effects of conventional drugs in anticancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Belo Horizonte/MG, Brazil
| |
Collapse
|
25
|
|
26
|
Permpoon U, Khan F, Vadevoo SMP, Gurung S, Gunassekaran GR, Kim MJ, Kim SH, Thuwajit P, Lee B. Inhibition of Tumor Growth against Chemoresistant Cholangiocarcinoma by a Proapoptotic Peptide Targeting Interleukin-4 Receptor. Mol Pharm 2020; 17:4077-4088. [PMID: 32881535 DOI: 10.1021/acs.molpharmaceut.0c00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholangiocarcinoma (CCA) has a poor prognosis and high chemoresistance. Interleukin-4 receptor (IL-4R) is overexpressed in several cancer cells and plays a crucial role in tumor progression and drug resistance. IL4RPep-1, an IL-4R-binding peptide, has been identified by phage display and used for tumor targeting. In this study, we exploited IL4RPep-1 to guide the tumor-specific delivery of a proapoptotic peptide to chemoresistant CCA, thereby inhibiting tumor growth. Immunohistochemistry of human primary CCA tissues showed that IL-4R levels were upregulated in moderately to poorly differentiated types, and higher levels of IL-4R are correlated with lower survival rates in patients with CCA. IL4RPep-1 was observed to preferentially bind with high IL-4R-expressing KKU-213 human CCA cells, whereas it barely bound with low IL-4R-expressing KKU-055 cells. A hybrid of IL4RPep-1 and a proapoptotic peptide (KLAKLAK)2 (named as IL4RPep-1-KLA) induced cytotoxicity and apoptosis in KKU-213 cells and increased those levels induced by 5-fluorouracil (5-FU). IL4RPep-1-KLA was internalized in the cells and colocalized with mitochondria. Whole-body fluorescence imaging and immunohistochemical analysis of tumor tissues showed the homing of IL4RPep-1-KLA as well as IL4RPep-1 to KKU-213 tumor in mice. Systemic administration of IL4RPep-1-KLA efficiently inhibited KKU-213 tumor growth, whereas treatment with 5-FU alone did not significantly inhibit tumor growth in mice. No significant systemic side effects including liver toxicity and immunotoxicity were observed in mice during peptide treatments. These findings suggest that IL4RPep-1-KLA holds potential as a targeted therapeutic agent against chemoresistant CCA.
Collapse
Affiliation(s)
- Uttapol Permpoon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Fatima Khan
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sri Murugan Poonkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| |
Collapse
|
27
|
Natural Agents Targeting Mitochondria in Cancer. Int J Mol Sci 2020; 21:ijms21196992. [PMID: 32977472 PMCID: PMC7582837 DOI: 10.3390/ijms21196992] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the key energy provider to highly proliferating cancer cells, and are subsequently considered one of the critical targets in cancer therapeutics. Several compounds have been studied for their mitochondria-targeting ability in cancer cells. These studies’ outcomes have led to the invention of “mitocans”, a category of drug known to precisely target the cancer cells’ mitochondria. Based upon their mode of action, mitocans have been divided into eight classes. To date, different synthetic compounds have been suggested to be potential mitocans, but unfortunately, they are observed to exert adverse effects. Many studies have been published justifying the medicinal significance of large numbers of natural agents for their mitochondria-targeting ability and anticancer activities with minimal or no side effects. However, these natural agents have never been critically analyzed for their mitochondria-targeting activity. This review aims to evaluate the various natural agents affecting mitochondria and categorize them in different classes. Henceforth, our study may further support the potential mitocan behavior of various natural agents and highlight their significance in formulating novel potential anticancer therapeutics.
Collapse
|
28
|
Massarano T, Mazir A, Lavi R, Byk G. Solid-Phase Multicomponent Synthesis of 3-Substituted Isoindolinones Generates New Cell-Penetrating Probes as Drug Carriers. ChemMedChem 2020; 15:833-838. [PMID: 32147941 DOI: 10.1002/cmdc.201900656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/28/2020] [Indexed: 11/05/2022]
Abstract
A modular solid-phase multicomponent reaction for the synthesis of 3-substituted isoindolinone derivatives has been carried out. A mixture of a chiral β-keto lactam, an aldehyde, an isocyanide and a dienophile react to produce chiral 3-substituted isoindolinones in one pot. Modularity was accomplished by using solid supported aldehydes and dienophiles. Optimization was achieved by using microwave as the source of energy. The reaction was also performed on a biologically relevant well-known programed cell death-inducing peptide D (KLAKLAK)2 on solid phase. The molecules show significant fluorescence with large Stokes shifts and fast cell penetration. The chimeric peptides can be tracked under a microscope thus proving the potential of the probes as cell sensors. They were efficiently internalized compared to unlabeled peptide, with a concomitant induction of programed cell death, thereby proving their potential as drug carriers.
Collapse
Affiliation(s)
- Tlalit Massarano
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Alexandra Mazir
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Ronit Lavi
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Gerardo Byk
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| |
Collapse
|
29
|
Abnous K, Danesh NM, Ramezani M, Alibolandi M, Bahreyni A, Lavaee P, Moosavian SA, Taghdisi SM. A smart ATP-responsive chemotherapy drug-free delivery system using a DNA nanostructure for synergistic treatment of breast cancer in vitro and in vivo. J Drug Target 2020; 28:852-859. [PMID: 31916879 DOI: 10.1080/1061186x.2020.1712407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study demonstrated a chemotherapy drug-free delivery system for breast cancer treatment based on a simple DNA nanostructure composed of sequence 1 containing ATP and AS1411 aptamers and sequence 2 containing antimiR-21. The DNA nanostructure was used for co-delivery of KLA peptide and antimiR-21 as antiapoptotic agents. These therapeutic agents could not be internalised into eukaryotic cells freely which is one of the great features of this targeting platform. The presented delivery system was ATP-responsive, leading to disassembly of the DNA nanostructure in high ATP concentration of cancer cells and restoration of the function of antimiR-21 in these cells. The DNA nanostructure was associated with high cellular uptake by MCF-7 and 4T1 cells due to expression of nucleolin as target of AS1411 on their plasma membranes, while the developed targeting platform could not be internalised into CHO cells because of lack of the active targeting moiety on their surfaces. Furthermore, the results showed that co-delivery of antimiR-21 and KLA peptide using the DNA nanostructure could efficiently prohibit tumour growth in vitro and in vivo and induce a synergistic anticancer activity. Thus, this work provides a new ATP-responsive nanotargeting delivery system and synergistic chemotherapy drug-free regimen for cancer treatment.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Lee J, Oh ET, Joo YE, Kim HG, Park HJ, Kim C. Stimulus-responsive conformational transformation of peptide with cell penetrating motif for triggered cytotoxicity. NEW J CHEM 2020. [DOI: 10.1039/d0nj04608f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modified KLA peptide with an intramolecular disulfide bond and a cell penetrating sequence is developed for enhanced intracellular uptake and triggered selective cytotoxicity towards cancer cells by stimulus-responsive conformational transformation.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences
- School of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Ye-eun Joo
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Ha Gyeong Kim
- Department of Microbiology
- Hypoxia-Related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Heon Joo Park
- Department of Microbiology
- Hypoxia-Related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
31
|
Lee J, Oh ET, Lee H, Kim J, Kim HG, Park HJ, Kim C. Stimuli-Responsive Conformational Transformation of Peptides for Tunable Cytotoxicity. Bioconjug Chem 2019; 31:43-50. [DOI: 10.1021/acs.bioconjchem.9b00730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Kim Y, Hwang S, Khalmuratova R, Kang S, Lee M, Song Y, Park JW, Yu J, Shin HW, Lee Y. α-Helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. J Control Release 2019; 317:181-194. [PMID: 31785303 DOI: 10.1016/j.jconrel.2019.11.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022]
Abstract
In the present study, we examined the potential of cell-penetrating peptide (CPP)-based intranasal drug delivery for the treatment of localized nasal diseases. Many charged or non-hydrophobic drugs have difficulty penetrating into the nasal epithelium due to intrinsic membrane impermeability and rapid mucociliary clearance in the nasal cavity. To treat chronic rhinosinusitis with nasal polyps (CRSwNP), one of the most common localized nasal diseases, we conjugated resveratrol (RSV) to an amphiphilic α-helical leucine (L)- and lysine (K)-rich CPP (LK) and intranasally delivered it to the interior of nasal epithelial cells for inhibiting epithelial-to-mesenchymal transition (EMT) caused by hypoxia-inducible factor 1α. The RSV-LK conjugate could penetrate into the nasal epithelium and efficiently inhibit EMT, nasal polyp formation, epithelial disruption, and related inflammation in an eosinophilic CRSwNP mouse model, at 10-fold lower doses and with 3-fold less frequent administration than free RSV. Due to the rapid penetration into the nasal epithelium and the therapeutic effect of the RSV-LK conjugate at much lower doses than free RSV, this CPP-based delivery system, with the ability to overcome the tight nasal epithelial barrier, may provide a new strategy for the treatment of localized nasal diseases without the systemic side effects of cargo drugs.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyoung Hwang
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Roza Khalmuratova
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mingyu Lee
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Wan Park
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jaehoon Yu
- Department of Chemistry and Education, College of Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Daniel J, Montaleytang M, Nagarajan S, Picard S, Clermont G, Lazar AN, Dumas N, Correard F, Braguer D, Blanchard-Desce M, Estève MA, Vaultier M. Hydrophilic Fluorescent Nanoprodrug of Paclitaxel for Glioblastoma Chemotherapy. ACS OMEGA 2019; 4:18342-18354. [PMID: 31720536 PMCID: PMC6844107 DOI: 10.1021/acsomega.9b02588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Highly water-soluble, nontoxic organic nanoparticles on which paclitaxel (PTX), a hydrophobic anticancer drug, has been covalently bound via an ester linkage (4.5% of total weight) have been prepared for the treatment of glioblastoma. These soft fluorescent organic nanoparticles (FONPs), obtained from citric acid and diethylenetriamine by microwave-assisted condensation, show suitable size (Ø = 17-30 nm), remarkable solubility in water, softness as well as strong blue fluorescence in an aqueous environment that are fully retained in cell culture medium. Moreover, these FONPs were demonstrated to show in vitro safety and preferential internalization in glioblastoma cells through caveolin/lipid raft-mediated endocytosis. The PTX-conjugated FONPs retain excellent solubility in water and remain stable in water (no leaching), while they showed anticancer activity against glioblastoma cells in two-dimensional and three-dimensional culture. PTX-specific effects on microtubules reveal that PTX is intracellularly released from the nanocarriers in its active form, in relation with an intracellular-promoted lysis of the ester linkage. As such, these hydrophilic prodrug formulations hold major promise as biocompatible nanotools for drug delivery.
Collapse
Affiliation(s)
- Jonathan Daniel
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Maeva Montaleytang
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Sounderya Nagarajan
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
| | - Sébastien Picard
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Guillaume Clermont
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Adina N. Lazar
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Noé Dumas
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
| | - Florian Correard
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Diane Braguer
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Mireille Blanchard-Desce
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Marie-Anne Estève
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Michel Vaultier
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| |
Collapse
|
34
|
Tian M, Han J, Ye A, Liu W, Xu X, Yao Y, Li K, Kong Y, Wei F, Zhou W. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2677-2684. [PMID: 30338536 DOI: 10.1002/jsfa.9435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Limited information is concerned on the structure changes of liposomal delivery system under infant conditions. Positively charged lactoferrin (LF)-loaded liposomes, with the entrapment efficiency (EE) of 52.3 ± 6.3%, were prepared from soybean-derived phospholipids using a thin-layer dispersion method. The structure changes and digestibility of LF-loaded liposomes under infant conditions, including simulated gastric fluid (SGF) and simulated small intestinal fluid (SIF), were characterized in terms of the average particle size, zeta potential, turbidity, fourier transform infrared, transmission electron microscopy, lipolysis and protein hydrolysis. RESULTS This study showed that the functional groups, favorable membrane structure and the EE of liposomes were slightly changed as a function of time when the liposome digested under SGF conditions. However, the intact bilayer structures were damaged and the EE of LF-loaded liposomes decreased to 28.5% after digestion in infant SIF. CONCLUSION These results suggested that liposomal membrane could prevent the gastric degradation and the structure of liposomes was not completely destroyed with a low concentration of pancreatin and bile salts under infant conditions. Present study provided information on the insight into the characteristics of liposomes during infant gastrointestinal digestion, which was useful for the development of microcapsule systems in infant diet. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Tian
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aiqian Ye
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Weilin Liu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixin Yao
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kexuan Li
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Youyu Kong
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fuqiang Wei
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Zhou
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
35
|
Yamasaki T, Buric D, Chacon C, Audran G, Braguer D, Marque SRA, Carré M, Brémond P. Chemical modifications of imidazole-containing alkoxyamines increase C-ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells. Bioorg Med Chem 2019; 27:1942-1951. [PMID: 30975504 DOI: 10.1016/j.bmc.2019.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/30/2023]
Abstract
Previously, we described alkoxyamines bearing a pyridine ring as new pro-drugs with low molecular weights and theranostic activity. Upon chemical stimulus, alkoxyamines undergo homolysis and release free radicals, which can, reportedly, enhance magnetic resonance imaging and trigger cancer cell death. In the present study, we describe the synthesis and the anti-cancer activity of sixteen novel alkoxyamines that contain an imidazole ring. Activation of the homolysis was conducted by protonation and/or methylation. These new molecules displayed cytotoxic activities towards human glioblastoma cell lines, including the U251-MG cells that are highly resistant to the conventional chemotherapeutic agent Temozolomide. We further showed that the biological activities of the alkoxyamines were not only related to their half-life times of homolysis. We lastly identified the alkoxyamine (RS/SR)-4a, with both a high antitumour activity and favourable logD7.4 and pKa values, which make it a robust candidate for blood-brain barrier penetrating therapeutics against brain neoplasia.
Collapse
Affiliation(s)
| | - Duje Buric
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Christine Chacon
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Diane Braguer
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France; APHM, Hôpital Timone, Marseille, France
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, Marseille, France; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva 9, Novosibirsk 630090, Russian Federation
| | - Manon Carré
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Paul Brémond
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
36
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Nyström L, Malmsten M. Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Wu J, Li J, Wang H, Liu CB. Mitochondrial-targeted penetrating peptide delivery for cancer therapy. Expert Opin Drug Deliv 2018; 15:951-964. [PMID: 30173542 DOI: 10.1080/17425247.2018.1517750] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro. MPPs create new opportunities to develop new treatments for cancer. AREAS COVERED We review the target sites of mitochondria and the target-penetration mechanism of MPPs, different strategies, and various additional strategies decorated MPPs for tumor cell mitochondria targeting, the decorating mattes including metabolism molecules, RNA, DNA, and protein, which exploited considered as therapeutic combined with MPPs and target in human cancer treatment. EXPERT OPINION/COMMENTARY Therapeutic selectivity that preferentially targets the mitochondrial abnormalities in cancer cells without toxic impact on normal cells still need to be deepen. Moreover, it needs appropriate study designs for a correct evaluation of the target delivery outcome and the degradation rate of the drug in the cell. Generally, it is optimistic that the advances in mitochondrial targeting drug delivery by MPPs plasticity outlined here will ultimately help to the discovery of new approaches for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Jiao Wu
- a Affiliated Ren He Hospital of China Three Gorges University , Yichang , China.,b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China
| | - Jason Li
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Hu Wang
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China.,d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chang-Bai Liu
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China.,c Medical School , China Three Gorges University , Yichang , China
| |
Collapse
|
39
|
Wang W, Suga T, Hagimori M, Kuroda N, Fuchigami Y, Kawakami S. Investigation of Intracellular Delivery of NuBCP-9 by Conjugation with Oligoarginines Peptides in MDA-MB-231 Cells. Biol Pharm Bull 2018; 41:1448-1455. [PMID: 30175779 DOI: 10.1248/bpb.b18-00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligoarginines (Rn) are becoming promising tools for the intracellular delivery of biologically active molecules. NuBCP-9, a peptide that induces apoptosis in B-cell lymphoma 2 (Bcl-2)-expressing cancer cells, has been reported to promote the uptake and non-specific cytotoxicity of R8, also called octaarginine. However, it is unknown whether a similar synergistic effect can be seen with other Rn. In this study, we conjugated NuBCP-9 with various Rn (n=8, 10, 12, 14) to investigate and compare their cellular uptake characteristics. In addition, their non-specific cytotoxicity and apoptosis-inducing abilities were evaluated. We found that NuBCP-9 conjugated with Rn enhanced cellular uptake mainly through clathrin-mediated endocytosis and macropinocytosis, and that the uptake pathways were not different from those used by unconjugated Rn. However, the cytotoxicity study showed that NuBCP-9-R12 and NuBCP-9-R14 conjugates enhanced non-specific cytotoxicity. We found that NuBCP-9-R10 conjugate had the highest uptake efficiency and induced correspondingly high levels of apoptosis, while resulting in a tolerable degree of non-specific toxicity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
40
|
Veloria JR, Chen L, Li L, Breen GAM, Lee J, Goux WJ. Novel cell-penetrating-amyloid peptide conjugates preferentially kill cancer cells. MEDCHEMCOMM 2018; 9:121-130. [PMID: 30108906 PMCID: PMC6071918 DOI: 10.1039/c7md00321h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/09/2017] [Indexed: 01/13/2023]
Abstract
The goal of this study was to develop a peptide which could use the toxic effects of amyloid, a substance which is the hallmark of over 25 known human diseases, to selectively kill cancer cells. Here we demonstrate that two separate amyloid-forming hexapeptides, one from the microtubule associated protein Tau involved in formation of paired helical filaments of Alzheimer's disease, and the other an amyloid forming sequence from apolipoprotein A1, when conjugated to a cell penetrating peptide (CPP) sequence, form toxic oligomers which are stable for up to 14 h and able to enter cells by a combination of endocytosis and transduction. The amyloid peptide conjugates showed selective cytotoxicity to breast cancer, neuroblastoma and cervical cancer cells in culture compared to normal cells. Fluorescence imaging experiments showed the CPP-amyloid peptide oligomers formed intracellular fibrous amyloid, visible in the endosomes/lysosomes, cytosol and nucleus with thioflavin S (ThS) staining. Further experiments with rhodamine-conjugated Dextran, propidium iodide (PI), and acridine orange (AO) suggested the mechanism of cell death was the permeability of the lysosomal membrane brought about by the formation of amyloid pores. Cytotoxicity could be abrogated by inhibitors of lysosomal hydrolases, consistent with a model where lysosomal hydrolases leak into the cytosol and induce cytotoxicity in subsequent downstream steps. Taken together, our data suggest that CPP-amyloid peptide conjugates show potential as a new class of anti-cancer peptides (ACPs).
Collapse
Affiliation(s)
- John R Veloria
- Department of Biological Sciences , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA
| | - Luxi Chen
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA .
| | - Lin Li
- Department of Biological Sciences , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA
| | - Gail A M Breen
- Department of Biological Sciences , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA .
| | - Warren J Goux
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 W. Campbell Rd , Richardson , TX 75080 , USA .
| |
Collapse
|
41
|
Vezenkov LL, Martin V, Bettache N, Simon M, Messerschmitt A, Legrand B, Bantignies JL, Subra G, Maynadier M, Bellet V, Garcia M, Martinez J, Amblard M. Ribbon-like Foldamers for Cellular Uptake and Drug Delivery. Chembiochem 2017; 18:2110-2114. [DOI: 10.1002/cbic.201700455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lubomir L. Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Vincent Martin
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Matthieu Simon
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Alexandre Messerschmitt
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Jean-Louis Bantignies
- L2C-UMR 5221 CNRS; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Virginie Bellet
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; Université de Montpellier; CNRS; ENSCM; 15 avenue Charles Flahault B. P.14491 34093 Montpellier Cedex 5 France
| |
Collapse
|
42
|
Guo Z, Li D, Peng H, Kang J, Jiang X, Xie X, Sun D, Jiang H. Specific hepatic stellate cell-penetrating peptide targeted delivery of a KLA peptide reduces collagen accumulation by inducing apoptosis. J Drug Target 2017; 25:715-723. [PMID: 28447897 DOI: 10.1080/1061186x.2017.1322598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver fibrosis is an aberrant wound-healing process to chronic hepatic inflammation and is characterized by excessive accumulation of extracellular matrix (ECM) that is produced by activated hepatic stellate cells (HSCs). Thus, activated HSCs play a key role in the pathogenesis of liver fibrosis and are a potential target for the treatment of liver fibrosis. Herein, we report that a specific HSC-penetrating peptide reduced collagen accumulation by inducing the apoptosis of HSC-T6 cells. We first screened HSC-specific transduction peptides and identified a novel HSC-targeted cell-penetrating peptide (HTP) that specifically interacted with HSC-T6 cells. A chimeric peptide termed HTPK25 was consequently generated by coupling HTP with the antimicrobial peptide KLA, which is capable of initiating cell apoptosis in mammalian cells. HTPK25 entered cells in a dose-dependent manner, reduced the cell viability and induced apoptosis via the caspase 3 pathway in HSC-T6 cells. Furthermore, HTPK25 inhibited the α-smooth muscle actin and collagen I expression in HSC-T6 cells. Our results demonstrated that the HTP was able to specifically and efficiently deliver the KLA peptide into HSC-T6 cells to induce apoptosis, indicating that HTP-delivered functional agents may present a promising approach for liver fibrosis therapy.
Collapse
Affiliation(s)
- Zhengrong Guo
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Dong Li
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Huanyan Peng
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Jiwen Kang
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Xiaoyu Jiang
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Xiaoli Xie
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Dianxing Sun
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Huiqing Jiang
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| |
Collapse
|
43
|
Sonawane P, Choi YA, Pandya H, Herpai DM, Fokt I, Priebe W, Debinski W. Novel Molecular Multilevel Targeted Antitumor Agents. CANCER TRANSLATIONAL MEDICINE 2017; 3:69-79. [PMID: 28825042 PMCID: PMC5558462 DOI: 10.4103/ctm.ctm_12_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A multifunctional fusion protein, IL-13.E13K-D2-NLS, effectively recognizes glioblastoma (GBM) cells and delivers its portion to the cell nucleus. IL-13.E13K-D2-NLS is composed of a cancer cell targeting ligand (IL-13.E13K), specialized cytosol translocation bacterial toxin domain 2 of Pseudomonas exotoxin A (D2) and SV40 T antigen nuclear localization signal (NLS). We have now tested whether we can produce proteins that would serve as a delivery vehicle to lysosomes and mitochondria as well. Moreover, we examined whether IL-13.E13K-D2-NLS can deliver anti-cancer drugs like doxorubicin to their nuclear site of action in cancer cells. We have thus constructed two novel proteins: IL-13.E13K-D2-LLS which incorporates lysosomal localization signal (LLS) of a human lysosomal associated membrane protein (LAMP-1) for targeting to lysosomes and IL-13-D2-KK2, which incorporates a pro-apoptotic peptide (KLAKLAK)2 (KK2) exerting its action in mitochondria. Furthermore, we have produced IL-13.E13K-D2-NLS and IL-13.E13K-D2-LLS versions containing a cysteine for site-specific conjugation with a modified doxorubicin, WP936. We found that single-chain recombinant proteins IL-13.E13K-D2-LLS and IL-13-D2-KK2 are internalized and localized mostly to the lysosomal and mitochondrial compartments, respectively, without major trafficking to cells' nuclei. We also determined that IL-13.E13K-D2-NLS-cys[WP936], IL-13.E13K-D2-LAMP-cys[WP936] and IL-13-D2-KK2 were cytotoxic to GBM cells overexpressing IL-13RA2, while much less cytotoxic to GBM cell lines expressing low levels of the receptor. IL-13.E13K-D2-NLS-cys[WP936] was the most potent of the tested anti-tumor agents including free WP936. We believe that our receptor-directed intracellular organelle-targeted proteins can be employed for numerous specific and safer treatment applications when drugs have specific intracellular sites of their action.
Collapse
Affiliation(s)
- Poonam Sonawane
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Young A. Choi
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | - Hetal Pandya
- National Institutes of Health, Bethesda, MD, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| | | | | | - Waldemar Debinski
- Department of Cancer Biology, Brain Tumor Center of Excellence,
Comprehensive Cancer Center of Wake Baptist Medical Center, Medical Center Boulevard,
Winston-Salem, NC 27157, USA
| |
Collapse
|
44
|
Huang Y, Li X, Sha H, Zhang L, Bian X, Han X, Liu B. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol Rep 2017; 37:2063-2070. [PMID: 28260064 DOI: 10.3892/or.2017.5440] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
KLA (sequence, KLAKLAKKLAKLAK) is a peptide which leads to programmed cell death by disrupting the mitochondrial membrane. However, low penetration in tumors greatly limits its application and efficacy. To develop a KLA-based cancer therapy, KLA-iRGD, a recombinant protein was constructed. It consists of the KLA peptide and iRGD (CRGDKGPDC), a tumor-homing peptide with high penetration into tumor tissue and cells. The conjugated KLA exhibits pro-apoptotic activity to prevent the growth of a tumor once it is inside the cell. Once KLA-iRGD is internalized in cultured tumor cells, via the activation of the receptor neuropilin-1, it spreads extensively throughout the mass of the tumor. The recombinant KLA-iRGD protein showed antitumor activity in vivo in mice and in vitro in tumor cell lines. Repeated treatment with KLA-iRGD greatly prevented tumor growth, resulting in a considerable reduction in tumor volume. According to our data, KLA-iRGD may serve as a potential anticancer agent with limited systemic toxicity and high selectivity for the treatment of MKN45 gastric cancer, which may lead to the enhancement of new targeted anticancer agents.
Collapse
Affiliation(s)
- Ying Huang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xihan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Xinyu Bian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
45
|
Li J, Hu K, Chen H, Wu Y, Chen L, Yin F, Tian Y, Li Z. An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chem Commun (Camb) 2017; 53:10452-10455. [DOI: 10.1039/c7cc04923d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized a novel in-tether chiral center induced helicity strategy (CIH) to develop a potent apoptosis inducer based on apoptotic KLA peptide. For our constructed peptides, the CIH-KLA-(R) epimer exhibited superior cellular uptakes and special mitochondrial targeting when compared with its S counterpart.
Collapse
Affiliation(s)
- Jingxu Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Kuan Hu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Hailing Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Science
- Southern Medical University
- Guangzhou
- China
| | - YuJie Wu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Longjian Chen
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Feng Yin
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Yuan Tian
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 611756
- P. R. China
| | - Zigang Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| |
Collapse
|
46
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
47
|
Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci 2016; 17:E701. [PMID: 27187357 PMCID: PMC4881524 DOI: 10.3390/ijms17050701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.
Collapse
Affiliation(s)
- Andre Reinhardt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
48
|
Alves ID, Carré M, Lavielle S. A Pathway Toward Tumor Cell-Selective CPPs? Methods Mol Biol 2016. [PMID: 26202276 DOI: 10.1007/978-1-4939-2806-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells.
Collapse
Affiliation(s)
- Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Institut Polytechnique Bordeaux, Universite Bordeaux, All. Geoffroy Saint-Hilaire, 33600, Pessac, France,
| | | | | |
Collapse
|
49
|
Randhawa HK, Gautam A, Sharma M, Bhatia R, Varshney GC, Raghava GPS, Nandanwar H. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 2016; 100:4073-83. [DOI: 10.1007/s00253-016-7329-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
|
50
|
Abstract
Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo.
Collapse
Affiliation(s)
- Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States.
| | - Nicholas H Flynn
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|