1
|
Shi R, Zhu Y, Chen Y, Lin Y, Shi S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J Control Release 2024; 375:155-177. [PMID: 39242033 DOI: 10.1016/j.jconrel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Zhou Y, Yang Y, Zhao D, Yi M, Ma Z, Gao Z. Ribosomal protein L17 functions as an antimicrobial protein in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109791. [PMID: 39067494 DOI: 10.1016/j.fsi.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.
Collapse
Affiliation(s)
- Yucong Zhou
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yifan Yang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Dongchu Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Shi R, Zhu Y, Lu W, Zhai R, Zhou M, Shi S, Chen Y. Nanomaterials: innovative approaches for addressing key objectives in periodontitis treatment. RSC Adv 2024; 14:27904-27927. [PMID: 39224639 PMCID: PMC11367407 DOI: 10.1039/d4ra03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease primarily caused by dental plaque, which is a significant global public health concern due to its high prevalence and severe impact on oral, and even systemic diseases. The current therapeutic plan focuses on three objectives: pathogenic bacteria inhibition, inflammation control, and osteogenic differentiation induction. Existing treatments still have plenty of drawbacks, thus, there is a pressing need for novel methods to achieve more effective treatment effects. Nanomaterials, as emerging materials, have been proven to exert their inherent biological properties or serve as stable drug delivery platforms, which may offer innovative solutions in periodontitis treatment. Nanomaterials utilized in periodontitis treatment fall into two categories, organic and inorganic nanomaterials. Organic nanomaterials are known for their biocompatibility and their potential to promote tissue regeneration and cell functions, including natural and synthetic polymers. Inorganic nanomaterials, such as metal, oxides, and mesoporous silica nanoparticles, exhibit unique physicochemical properties that make them suitable as antibacterial agents and drug delivery platforms. The inorganic nanosurface provides terrain induction for cell migration and osteogenic regeneration at defect sites by introducing different surface morphologies. Inorganic nanomaterials also play a role in antibacterial photodynamic therapy (aPDT) for eliminating pathogenic bacteria in the oral cavity. In this review, we will introduce multiple forms and applications of nanomaterials in periodontitis treatment and focus on their roles in addressing the key therapeutic objectives, to emphasize their promising future in achieving more effective and patient-friendly approaches toward periodontal tissue regeneration and overall health.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Ruohan Zhai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
4
|
Farzi N, Oloomi M, Bahramali G, Siadat SD, Bouzari S. Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies. Probiotics Antimicrob Proteins 2024; 16:796-814. [PMID: 37148452 DOI: 10.1007/s12602-023-10070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii have emerged as major clinical threats owing to the increasing prevalence of ventilator-associated pneumonia caused by multidrug-resistant or extensively drug-resistant strains. The present study aimed to assess the antibacterial effects and efficacy of LL-37 fragment GF-17D3 and synthetic Scolopendin A2 peptides against resistant clinical strains in vitro and in vivo models. P. aeruginosa, S. aureus, and A. baumannii were isolated from clinical infections. Their antibiotic resistance and minimum inhibitory concentration were assessed. LL-37 fragment GF-17D3 peptide was selected from available databases. Scolopendin A2 peptide's 6th amino acid (proline) was substituted with lysine and peptides and MICs were determined. The biofilm inhibitory activity was quantified at sub MIC concentrations. Synergetic effects of Scolopendin A2 and imipenem were assessed by checkerboard. After mice nasal infection with P. aeruginosa, peptides LD50 was determined. Isolates harbored complete resistance toward the majority of antibiotics and MIC values ranged between 1 and > 512 µg/ml. The majority of isolates exhibited strong biofilm activity. Synthetic peptides showed lower MIC values than antibiotic agents and the lowest MIC values were obtained for synthetic peptides in combination with antibiotics. The Synergisms effect of Scolopendin A2 with imipenem was also determined. Scolopendin A2 was found to have antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 64 µg/ml, 8 µg/ml, and 16 µg/ml, respectively, and LL37 showed antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 128 µg/ml, 32 µg/ml, and 32 µg/ml, respectively. Both AMPs decreased biofilms by ≥ 96% at 1 × MIC. The biofilm inhibitory activity was measured at sub MIC concentrations of the peptides and the results demonstrated that Scolopendin A2 exhibited anti-biofilm activity at 1/4 × MIC and 1/2 × MIC concentrations was 47.9 to 63.8%, although LL37 among 1/4 × MIC and 1/2 × MIC concentrations was 21.3 to 49.6% against three pathogens. The combination of Scolopendin A2 and antibiotics demonstrated synergistic activity-resistant strains with FIC values ≤ 0.5 for three pathogens, while LL37 and antibiotics showed synergistic activity FIC values ≤ 0.5 for only P. aeruginosa. Infection model Scolopendin A2 with Imipenem (2 × MIC) was efficacious in vivo, with a 100% survival rate following treatment at 2 × MIC after 120 h. The mRNA expression of biofilm-related genes was decreased for both peptides. Synthesis Scolopendin A2 decreased the expression of biofilm formation genes compared to the control group. Synthetic Scolopendin A2 exhibits antimicrobial activity without causing toxicity on the human epithelial cell line. Based on our findings, it seems that synthetic Scolopendin A2 is an appropriate antimicrobial source. That could be a promising option in combination with antibiotics for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant bacteria. Nevertheless, additional experiments are required to assess another potential of this novel AMP.
Collapse
Affiliation(s)
- Nastaran Farzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Park J, Kim H, Kang DD, Park Y. Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans. J Microbiol 2024; 62:101-112. [PMID: 38589765 PMCID: PMC11021323 DOI: 10.1007/s12275-024-00113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently, antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The objective of this study was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS) production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.
Collapse
Affiliation(s)
- Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Hyeongsun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Da Dam Kang
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
6
|
Salinas-Restrepo C, Naranjo-Duran AM, Quintana J, Bueno J, Guzman F, Hoyos Palacio LM, Segura C. Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 13:6. [PMID: 38275316 PMCID: PMC10812672 DOI: 10.3390/antibiotics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024] Open
Abstract
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Ana María Naranjo-Duran
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Juan Quintana
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia;
| | - Julio Bueno
- Grupo Reproducción, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia;
| | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 3100000, Chile;
| | - Lina M. Hoyos Palacio
- Escuela de Ciencias de la Salud, Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
7
|
Silva RRS, Malveira EA, Aguiar TKB, Neto NAS, Roma RR, Santos MHC, Santos ALE, Silva AFB, Freitas CDT, Rocha BAM, Souza PFN, Teixeira CS. DVL, lectin from Dioclea violacea seeds, has multiples mechanisms of action against Candida spp via carbohydrate recognition domain. Chem Biol Interact 2023; 382:110639. [PMID: 37468117 DOI: 10.1016/j.cbi.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Lectins are proteins of non-immunological origin with the ability to bind to carbohydrates reversibly. They emerge as an alternative to conventional antifungals, given the ability to interact with carbohydrates in the fungal cell wall inhibiting fungal growth. The lectin from D. violacea (DVL) already has its activity described as anti-candida in some species. Here, we observed the anti-candida effect of DVL on C. albicans, C. krusei and C. parapsilosis and its multiple mechanisms of action toward the yeasts. Additionally, it was observed that DVL induces membrane and cell wall damage and ROS overproduction. DVL was also able to cause an imbalance in the redox system of the cells, interact with ergosterol, inhibit ergosterol biosynthesis, and induce cytochrome c release from the mitochondrial membrane. These results endorse the potential application of DVL in developing a new antifungal drug to fight back against fungal resistance.
Collapse
Affiliation(s)
- Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Maria H C Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Ana L E Santos
- Medical School, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil; Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-275, CE, Brazil.
| | - Claudener S Teixeira
- Center for Agricultural Sciences and Biodiversity, Federal University of Cariri, Crato, 63130-025, Brazil.
| |
Collapse
|
8
|
Hu YX, Liu Z, Zhang Z, Deng Z, Huang Z, Feng T, Zhou QH, Mei S, Yi C, Zhou Q, Zeng PH, Pei G, Tian S, Tian XF. Antihepatoma peptide, scolopentide, derived from the centipede scolopendra subspinipes mutilans. World J Gastroenterol 2023; 29:1875-1898. [PMID: 37032730 PMCID: PMC10080696 DOI: 10.3748/wjg.v29.i12.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China. However, current studies focus on antimicrobial and anticoagulation agents rather than tumors. The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated. It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines.
AIM To purify, characterize, and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism.
METHODS An antihepatoma peptide (scolopentide) was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis, a Sephadex G-25 column, and two steps of high-performance liquid chromatography (HPLC). Additionally, the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity. The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry (QTOF MS), and the sequence was matched by using the Mascot search engine. Based on the sequence and molecular weight, scolopentide was synthesized using solid-phase peptide synthesis methods. The synthetic scolopentide was confirmed by MS and HPLC. The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro. The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo. In the tumor xenograft experiments, qualified model mice (male 5-week-old BALB/c nude mice) were randomly divided into 2 groups (n = 6): The scolopentide group (0.15 mL/d, via intraperitoneal injection of synthetic scolopentide, 500 mg/kg/d) and the vehicle group (0.15 mL/d, via intraperitoneal injection of normal saline). The mice were euthanized by cervical dislocation after 14 d of continuous treatment. Mechanistically, flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro. A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro. Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4 (DR4) and DR5. qRT-PCR was used to measure the mRNA expression of DR4, DR5, fas-associated death domain protein (FADD), Caspase-8, Caspase-3, cytochrome c (Cyto-C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1β converting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice. Western blot assays were used to measure the protein expression of DR4, DR5, FADD, Caspase-8, Caspase-3, and Cyto-C in the tumor tissues. The reactive oxygen species (ROS) of tumor tissues were tested.
RESULTS In the process of purification, characterization and synthesis of scolopentide, the optimal enzymatic hydrolysis conditions (extract ratio: 5.86%, IC50: 0.310 mg/mL) were as follows: Trypsin at 0.1 g (300 U/g, centipede-trypsin ratio of 20:1), enzymolysis temperature of 46 °C, and enzymolysis time of 4 h, which was superior to freeze-thawing with liquid nitrogen (IC50: 3.07 mg/mL). A peptide with the strongest antihepatoma activity (scolopentide) was further purified through a Sephadex G-25 column (obtained A2) and two steps of HPLC (obtained B5 and C3). The molecular weight of the extracted scolopentide was 1018.997 Da, and the peptide sequence was RAQNHYCK, as characterized by QTOF MS and Mascot. Scolopentide was synthesized in vitro with a qualified molecular weight (1018.8 Da) and purity (98.014%), which was characterized by MS and HPLC. Extracted scolopentide still had an antineoplastic effect in vitro, which inhibited the proliferation of Eca-109 (IC50: 76.27 μg/mL), HepG2 (IC50: 22.06 μg/mL), and A549 (IC50: 35.13 μg/mL) cells, especially HepG2 cells. Synthetic scolopentide inhibited the proliferation of HepG2 cells (treated 6, 12, and 24 h) in a concentration-dependent manner in vitro, and the inhibitory effects were the strongest at 12 h (IC50: 208.11 μg/mL). Synthetic scolopentide also inhibited the tumor volume (Vehicle vs Scolopentide, P = 0.0003) and weight (Vehicle vs Scolopentide, P = 0.0022) in the tumor xenograft experiment. Mechanistically, flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01% (0 μg/mL), 12.13% (10 μg/mL), 16.52% (20 μg/mL), and 23.20% (40 μg/mL). Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells. Molecular docking suggested that scolopentide tightly bound to DR4 and DR5, and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol, respectively. In subcutaneous xenograft tumors from mice, quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD, caspase-8 and caspase-3 through a mitochondria-independent pathway.
CONCLUSION Scolopentide, an antihepatoma peptide purified from centipedes, may inspire new antihepatoma agents. Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.
Collapse
Affiliation(s)
- Yu-Xing Hu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhuo Liu
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhen Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Scientific Research, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ting Feng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing-Hong Zhou
- Department of Pediatric, Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen 518000, Guangdong Province, China
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Chun Yi
- Department of Pathology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- Department of Andrology, First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Pu-Hua Zeng
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha 410208, Hunan Province, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Sha Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau 999078, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
9
|
Won T, Mohid SA, Choi J, Kim M, Krishnamoorthy J, Biswas I, Bhunia A, Lee D. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Biophys Chem 2023; 296:106981. [PMID: 36871366 DOI: 10.1016/j.bpc.2023.106981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.
Collapse
Affiliation(s)
- TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India
| | - JiHye Choi
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - MinSoo Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India.
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
10
|
Chen H, Zheng T, Wu C, Wang J, Ye F, Cui M, Sun S, Zhang Y, Li Y, Dong Z. A Shape-Adaptive Gallic Acid Driven Multifunctional Adhesive Hydrogel Loaded with Scolopin2 for Wound Repair. Pharmaceuticals (Basel) 2022; 15:1422. [PMID: 36422552 PMCID: PMC9695609 DOI: 10.3390/ph15111422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 07/22/2023] Open
Abstract
Wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatment has unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the short retention on the wound. Herein, we develop a multifunctional adhesive hydrogel that can realize robust adhesion, transdermal delivery, and combination therapy for wound healing. Multifunctional hydrogels (CS-GA-S) are mixed with chitosan-gallic acid (CS-GA), sodium periodate, and centipede peptide-scolopin2, which slowly releases scolopin2 in the layer of the dermis. The released scolopin2 induces the pro-angiogenesis of skin wounds and enables excellent antibacterial effects. Separately, GA as a natural reactive-oxygen-species-scavenger promotes antioxidation, and further enables excellent antibacterial effects and wet tissue adhesion due to a Schiff base and Michael addition reaction for accelerating wound healing. Once adhered to the wound, the precursor solution becomes both a physically and covalently cross-linked network hydrogel, which has potential advantages for wound healing with ease of use, external environment-isolating, and minimal tissue damage. The therapeutic effects of CS-GA-S on wound healing are demonstrated with the full thickness cutaneous wounds of a mouse model. The significant improvement of wound healing is achieved for mice treated with CS-GA-S. This preparation reduces wound system exposure, prolongs local drug residence time, and improves efficacy. Accordingly, with the incorporation of scolopin2 into the shape-adaptive CS-GA hydrogel, the composite hydrogel possesses multi-functions of mechanical adhesion, drug therapy, and skin wound healing. Overall, such an injectable or sprayable hydrogel plays an effective role in emergency wound treatment with the advantage of convenience and portability.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Fan Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yun Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| |
Collapse
|
11
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
12
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Lycosin-II Exhibits Antifungal Activity and Inhibits Dual-Species Biofilm by Candida albicans and Staphylococcus aureus. J Fungi (Basel) 2022; 8:jof8090901. [PMID: 36135626 PMCID: PMC9504746 DOI: 10.3390/jof8090901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The increase and dissemination of antimicrobial resistance is a global public health issue. To address this, new antimicrobial agents have been developed. Antimicrobial peptides (AMPs) exhibit a wide range of antimicrobial activities against pathogens, including bacteria and fungi. Lycosin-II, isolated from the venom of the spider Lycosa singoriensis, has shown antibacterial activity by disrupting membranes. However, the mode of action of Lycosin-II and its antifungal activity have not been clearly described. Therefore, we confirmed that Lycosin-II showed antifungal activity against Candida albicans (C. albicans). To investigate the mode of action, membrane-related assays were performed, including an evaluation of C. albicans membrane depolarization and membrane integrity after exposure to Lycosin-II. Our results indicated that Lycosin-II damaged the C. albicans membrane. Additionally, Lycosin-II induced oxidative stress through the generation of reactive oxygen species (ROS) in C. albicans. Moreover, Lycosin-II exhibited an inhibitory effect on dual-species biofilm formation by C. albicans and Staphylococcus aureus (S. aureus), which are the most co-isolated fungi and bacteria. These results revealed that Lycosin-II can be utilized against C. albicans and dual-species strain infections.
Collapse
|
14
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
15
|
Li Z, Shen F, Song L, Zhang S. Antifungal Activity of NP20 Derived from Amphioxus Midkine/Pleiotrophin Homolog Against Aspergillus niger and Aspergillus fumigatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:614-625. [PMID: 35610324 DOI: 10.1007/s10126-022-10131-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
With the emergence of antifungal resistance, systematic infections with Aspergillus are becoming the major cause of the clinical morbidity. The development of novel antifungal agents with high efficacy, low drug tolerance, and few side effects is urgent. In response to that need, we have identified NP20. Here we demonstrate clearly that NP20 has antifungal activity, capable of killing the spores of Aspergillus niger and Aspergillus fumigatus as well as causing direct damage to the surface, membrane, cytoplasm, organelle, and nucleus of the fungal spores. Interestingly, NP20 is active under temperature stress and a wide range of pH. Subsequently, MTT assay, assay for binding of NP20 to fungal cell wall components, membrane depolarization assay, confocal microscopy, ROS assay, DNA replication, and protein synthesis assay are performed to clarify the mechanisms underlying NP20 against Aspergillus. The results show that NP20 can bind with and pass through the fungal cell wall, and then interfere with the lipid membrane. Moreover, NP20 can induce intracellular ROS production, DNA fragmentation, and protein synthesis inhibition of the fungal cells. These together indicate that NP20 is a novel antifungal peptide, which has considerable potential for future development as novel peptide antibiotics against Aspergillus.
Collapse
Affiliation(s)
- Zhi Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Fangwang Shen
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Lili Song
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
16
|
Li Y, Gong Y, Chen Y, Qu B, Zhang S. Identification and functional characterization of Cofilin-1 as a new member of antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104281. [PMID: 34601007 DOI: 10.1016/j.dci.2021.104281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Cofilin-1 (Cfl1), a member of the ADF/cofilin family, has been identified as one of differentially expressed proteins in human dendritic cells challenged with lipopolysaccharide (LPS), suggesting that it may be involved in immune response. Here we showed that zebrafish cfl1 was markedly up-regulated by LPS and LTA treatment. We also showed that zebrafish recombinant Cfl1 (rCfl1) not only bound to the Gram-negative and positive bacteria A. hydrophila and S. aureus as well as their signature molecules LPS and LTA but also inhibited the growth of the bacteria. Moreover, we found that the heparin-binding motif-containing regions of Cfl1, i.e., Cfl19-25, Cfl134-51 and Cfl1108-125, like rCfl1, were also able to bind to LPS and LTA and to inhibit the bacterial growth. rCfl1, Cfl19-25, Cfl134-51, and Cfl1108-125 were all able to cause bacterial cell destruction, to induce membrane depolarization, and to stimulate intracellular ROS production. Finally, we showed that zebrafish Cfl1 could protect developing embryos/larvae against attack by the potential pathogen A. hydrophila. These data together indicate that zebrafish Cfl1 plays an immune-relevant role as a newly-characterized antimicrobial protein.
Collapse
Affiliation(s)
- Yishuai Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yi Gong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ying Chen
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Qingdao Cancer Institute, Qingdao Central Hospital, 127 Siliunan Road, Qingdao, 266042, China.
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
17
|
Ma Z, Tan Y, Qu B, Gao Z, Zhang S. Identification of amphioxus protein disulfide isomerase as both an enzyme and an immunocompotent factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104238. [PMID: 34428528 DOI: 10.1016/j.dci.2021.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have shown that protein disulfide isomerase (PDI), a member of the thioredoxin (TRX) superfamily, are broadly associated with immune responses in a variety of animals. However, it remains largely unknown about the direct roles of PDIs during a bacterial infection. In this study, we identified the presence of a single pdi gene in the amphioxus Branchiostoma japonicum, Bjpdi. The deduced protein BjPDI is structurally characterized by the presence of four Trx-like domains in the order of a, b, b' and a' and a short acidic C-terminal tail, that are characteristic of PDIs. We demonstrated that rBjPDI displayed both thiol reductase and disulfide bond isomerase activities, indicating comparability of BjPDI with PDIs in term of enzymatic activities. We also showed that rBjPDI induced bacterial agglutination and exhibited a lectin-like activity capable of binding both bacteria (E. coli and S. aureus) and their signature molecules LPS and LTA. Furthermore, BjPDI could kill S. aureus via inducing membrane depolarization and intracellular ROS production in vitro, and treatment of amphioxus with a blocking anti-PDI antibody in vivo markedly reduced the survival rate of amphioxus following attack by S. aureus. Collectively, our study demonstrates that amphioxus protein disulfide isomerase acts as both an enzyme and an immunocompotent factor, and reports the specific function and mode of action of PDIs in immune responses.
Collapse
Affiliation(s)
- Zengyu Ma
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China; Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Yunxia Tan
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
18
|
Nazeer N, Rodriguez-Lecompte JC, Ahmed M. Bacterial-Specific Aggregation and Killing of Immunomodulatory Host Defense Peptides. Pharmaceuticals (Basel) 2021; 14:839. [PMID: 34577539 PMCID: PMC8467575 DOI: 10.3390/ph14090839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
This study involves the design and development of disulfide bridge-linked antimicrobial peptides using the host defense protein Angiogenin 4 (chAng4) as a template. The mini peptides derived from chAng4 (mCA4s) were evaluated for their antibacterial efficacies in various pathogenic bacterial strains, and the role of the oxidation state of thiols in the peptide sequence and its implication on antibacterial properties were explored. A remarkable property of these synthetic mCA4 peptides is their capability to flocculate bacteria and mediate bacterial-specific killing, in the absence of any other external stimulus. mCA4s were further evaluated for their cellular uptake, hemolytic activities, toxicities, and immunomodulatory activities in different eukaryotic cell lines. The results indicate that disulfide bridge-containing cationic amphipathic peptides show superior antibacterial efficacies, are nontoxic and nonhemolytic, and mediate bacterial flocculation and killing, in the absence of external stimuli.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
19
|
Gong Y, Wu F, Li H, Zhang X, Zhang S. Identification and functional characterization of AP-2 complex subunit mu-A as a new member of antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104099. [PMID: 33848529 DOI: 10.1016/j.dci.2021.104099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
AP-2 complex subunit mu-A (AP2M1A) is a component of the adaptor complexes that link clathrin to receptors in coated vesicles. It has recently been shown to be involved in the resistance to oxidative damage, challenging the conventional role of AP2M1A. Here we demonstrated that AP2M1A was a heparin-binding protein abundantly stored in eggs and embryos of zebrafish, and its gene expression was markedly up-regulated by LPS and LTA treatment. We also showed that recombinant AP2M1A (rAP2M1A) was not only able to interact with Gram-negative and Gram-positive bacteria as well as their signature molecules LPS and LTA, but also able to inhibit the growth of the bacteria. Additionally, we found that AP2M1A354-382 that contained 2 closely positioned heparin-binding motifs could also bind to LPS and LTA, and inhibit the bacterial growth. Both rAP2M1A and AP2M1A354-382 were shown to execute antibacterial activity by a combined action of destabilization/destruction of bacterial cell wall through interaction with LPS and LTA, disturbance of the usually polarized membrane through depolarization, and apoptosis/necrosis through intracellular ROS production. Finally, we showed that AP2M1A could protect zebrafish developing embryos/larvae against attack by the potential pathogen Aeromonas hydrophila. All these demonstrate for the first time that AP2M1A is a maternal antimicrobial protein previously uncharacterized. It also establishes a correlation between antibacterial activity and heparin-binding motifs.
Collapse
Affiliation(s)
- Yi Gong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fei Wu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiangmin Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
20
|
Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Potent in vitro synergistic antibacterial activity of natural amphiphilic Sapindoside A and B against Cutibacterium acnes with destructive effect on bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183699. [PMID: 34297983 DOI: 10.1016/j.bbamem.2021.183699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Sapindus saponins are obtained from the outer bark of Sapindus mukorossi Gaertn. (S. mukorossi), and they have become an interesting subject in the search for new anti-acne agents without resistance. This study aimed to screen the synergistic antibacterial combination from Sapindus saponins and investigated the synergistic antibacterial action via targeting the cell membrane of Cutibacterium acnes (C. acnes) to reduce the effective dose. The combination of Sapindoside A and B (SAB) was obtained with synergistic activity against C. acnes. SAB led to the leakage of ions and disturbed the membrane morphology of C. acnes. The spectral features of cell membrane composition showed obvious changes based on Raman spectroscopy, and changes in membrane protein microenvironment were also observed by fluorescence spectroscopy. Among the above results, the contribution of Sapindoside A was greater than that of Sapindoside B to the synergistic combination of SAB. Furthermore, molecular docking demonstrated that Sapindoside A interacted with penicillin-binding protein 2, playing an important role in peptidoglycan synthesis for the cross wall, and showed a higher binding score than Sapindoside B, further indicating that the greater contribution in the synergistic action of SAB on membrane proteins. Collectively, these results showed that the synergistic antibacterial action of SAB against C. acnes could be achieved by attacking cell membrane, and Sapindoside A played a major role, suggesting that SAB has the potential to be the natural anti-acne agent additive in the cosmetic industry.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yu-Liang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
21
|
Chen Y, Yao L, Wang Y, Ji X, Gao Z, Zhang S, Ji G. Identification of ribosomal protein L30 as an uncharacterized antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104067. [PMID: 33705790 DOI: 10.1016/j.dci.2021.104067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Several ribosomal proteins have been shown to adopt for an antimicrobial function as antimicrobial proteins (AMPs). However, information as such is rather limited and their mode of action remains ill-defined. Here we demonstrated that amphioxus RPL30, BjRPL30, was a previously uncharacterized AMP, which was not only capable of binding Gram-negative and Gram-positive bacteria via interaction with LPS, LTA and PGN but also capable of killing the bacteria. We also showed that the residues positioned at 2-46 formed the core region for the antimicrobial activity of BjRPL30. Notably, both the hydrophobic ratio and net charge as well as 3D structures of the residues corresponding to BjRPL302-27 and BjRPL3023-46 from both eukaryotic and prokaryotic RPL30 proteins were closely similar to those of BjRPL302-27 and BjRPL3023-46, suggesting the antibacterial activity of RPL30 was highly conserved. This was further corroborated by the fact that the synthesized counterparts human RPL5-30 and RPL26-49 also had antibacterial activity. We show that the recombinant protein BjRPL30 executes antimicrobial function in vitro by a kind of membranolytic action including interaction with bacterial membrane through LPS, LTA and PGN as well as induction of membrane depolarization. Finally, we found that neither BjRPL30 nor its truncated form BjRPL302-27 and BjRPL3023-46 had hemolytic activity towards human red blood cells, making them promising lead molecules for the design of novel AMPs against bacteria. Altogether, these indicated that RPL30 is a member of AMP which has ancient origin and is highly conserve throughout evolution.
Collapse
Affiliation(s)
- Ying Chen
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaohan Ji
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China
| | - Guangdong Ji
- Department of Marine Biology, Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
22
|
Zhang B, Qin X, Zhou M, Tian T, Sun Y, Li S, Xiao D, Cai X. Tetrahedral DNA nanostructure improves transport efficiency and anti-fungal effect of histatin 5 against Candida albicans. Cell Prolif 2021; 54:e13020. [PMID: 33694264 PMCID: PMC8088467 DOI: 10.1111/cpr.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Anti-microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His-5) was synthesized and the transport efficiency and anti-fungal effect were measured to evaluate the promotion of His-5 modified by TDNs. MATERIALS AND METHODS Tetrahedral DNA nanostructures/His-5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti-fungal effect of the TDN/His-5 complex was evaluated by determining the growth curve and colony-forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His-5. RESULTS The results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti-fungal effect against C. albicans. CONCLUSIONS Our study showed that TDN/His-5 was synthesized successfully. And by the modification of TDNs, His-5 showed increased transport efficiency and improved anti-fungal effect.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Qin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yue Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Songhang Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Dexuan Xiao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
23
|
Lee H, Hwang JS, Lee DG. Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli. J Microbiol Biotechnol 2021; 31:189-196. [PMID: 33263335 PMCID: PMC9705878 DOI: 10.4014/jmb.2010.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosislike death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK2 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK2 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea,Corresponding author Phone: +82-53-950-5373 Fax: +82-53-955-5522 E-mail:
| |
Collapse
|
24
|
Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Innate immune function of serine/threonine-protein kinase from Macrobrachium rosenbergii in response to host-pathogen interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 106:332-340. [PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
25
|
Qu B, Ma Z, Yao L, Gao Z, Zhang S. Preserved antibacterial activity of ribosomal protein S15 during evolution. Mol Immunol 2020; 127:57-66. [PMID: 32927165 DOI: 10.1016/j.molimm.2020.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Conventional role of ribosomal proteins is ribosome assembly and protein translation, but some ribosomal proteins also show antimicrobial peptide (AMP) activity, though their mode of action remains ill-defined. Here we demonstrated for the first time that amphioxus RPS15, BjRPS15, was a previously uncharacterized AMP, which was not only capable of identifying Gram-negative and -positive bacteria via interaction with LPS and LTA but also capable of killing the bacteria. We also showed that both the sequence and 3D structure of RPS15 and its prokaryotic homologs were highly conserved, suggesting its antibacterial activity is universal across widely separated taxa. Actually this was supported by the facts that the residues positioned at 45-67 formed the core region for the antimicrobial activity of BjRPS15, and its prokaryotic counterparts, including Nitrospirae RPS1933-55, Aquificae RPS1933-55 and P. syringae RPS1950-72, similarly displayed antibacterial activities. BjRPS15 functioned by both interaction with bacterial surface via LPS and LTA and membrane depolarization as well as induction of intracellular ROS. Moreover, we showed that RPS15 existed extracellularly in amphioxus, shrimp, zebrafish and mice, hinting it may play a critical role in systematic immunity in different animals. In addition, we found that neither BjRPS15 nor its truncated form BjRPS1545-67 were toxic to mammalian cells, making them promising lead molecules for the design of novel AMPs against bacteria. Collectively, these indicate that RPS15 is a new member of AMP with ancient origin and high conservation throughout evolution.
Collapse
Affiliation(s)
- Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
26
|
Ma Z, Qu B, Yao L, Gao Z, Zhang S. Identification and functional characterization of ribosomal protein S23 as a new member of antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103730. [PMID: 32423862 DOI: 10.1016/j.dci.2020.103730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Previous studies show that some ribosomal proteins possess antimicrobial peptide (AMP) activity. However, information as such remains rather fragmentary and rather limited. We showed here for the first time that amphioxus RPS23, BjRPS23, was a previously uncharacterized AMP. It not only acted as a pattern recognition receptor, capable of identifying LPS, LTA and PGN, but also an effector, capable of killing the Gram-negative and -positive bacteria. We also showed that the residues positioned at 67-84 formed the core region for the antimicrobial activity of BjRPS23, and its orthologues Verrucomicrobia RPS1268-85 and Thermotoga RPS1265-82 similarly displayed some antibacterial activities. BjRPS23 functioned by a combined action of membranolytic mechanisms including interaction with bacterial membrane via LPS, LTA and PGN, and membrane depolarization. BjRPS23 also stimulated production of intracellular ROS in bacteria. Moreover, we demonstrated that RPS23 existed across widely separated taxa, and might play a universal role in protection against bacterial infection in different animals. In addition, we found that neither BjRPS23 nor its truncated form BjRPS2367-84 were cytotoxic to mammalian cells, making them promising lead molecules for the design of novel peptide antibiotics against bacteria. Collectively, these indicate that RPS23 is a new member of AMP with ancient origin and high conservation.
Collapse
Affiliation(s)
- Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
27
|
Antimicrobial Mechanism of pBD2 against Staphylococcus aureus. Molecules 2020; 25:molecules25153513. [PMID: 32752087 PMCID: PMC7435708 DOI: 10.3390/molecules25153513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) show high antibacterial activity against pathogens, which makes them potential new therapeutics to prevent and cure diseases. Porcine beta defensin 2 (pBD2) is a newly discovered AMP and has shown antibacterial activity against different bacterial species including multi-resistant bacteria. In this study, the functional mechanism of pBD2 antibacterial activity against Staphylococcus aureus was investigated. After S. aureus cells were incubated with different concentrations of pBD2, the morphological changes in S. aureus and locations of pBD2 were detected by electron microscopy. The differentially expressed genes (DEGs) were also analyzed. The results showed that the bacterial membranes were broken, bulging, and perforated after treatment with pBD2; pBD2 was mainly located on the membranes, and some entered the cytoplasm. Furthermore, 31 DEGs were detected and confirmed by quantitative real-time PCR (qRT-PCR). The known functional DEGs were associated with transmembrane transport, transport of inheritable information, and other metabolic processes. Our data suggest that pBD2 might have multiple modes of action, and the main mechanism by which pBD2 kills S. aureus is the destruction of the membrane and interaction with DNA. The results imply that pBD2 is an effective bactericide for S. aureus, and deserves further study as a new therapeutic substance against S. aureus.
Collapse
|
28
|
CxxC Zinc Finger Protein Derived Peptide, MF18 Functions Against Biofilm Formation. Protein J 2020; 39:337-349. [PMID: 32621273 DOI: 10.1007/s10930-020-09904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The major threat in modern medicine was biofilm forming bacterial related infections and they were highly tolerant to conventional antibiotics and a boundless demand for new drugs. In this regard, antimicrobial peptide (AMP) have been considered as potential alternative agents to conventional antibiotics. In this study, we have reported a CxxC zinc finger protein derived peptide, MF18 and its various biological role including activity against biofilm forming bacteria. Zinc finger protein are important in regulation of several cellular processes and wide range of molecular functions. The CxxC zinc finger protein identified from the cDNA library of a teleost fish; further it was characterised using various online bioinformatics programs. During the in-silico analysis, an AMP named MF18 was identified from the CxxC zinc finger protein, then it was synthesised for further biological activity studies. The antimicrobial activity of MF18 was confirmed against the biofilm clinical isolates such as Staphylococcus aureus and Escherichia coli. The MIC of the antimicrobial peptide at the concentration of 320 µM was observed against these two biofilm bacteria. The mechanism of the peptides was determined using bacteria on its membrane permeabilization ability by scanning electron microscopy. It is exhibited that the MF18 potentially influenced in damaging the morphology of the bacteria. The toxicity of MF18 against the continuous cell line (RAW 264.7) was demonstrated by MTT assay and also using peripheral red blood cells by haemolytic assay; both assays showed that the peptide have no toxicity on the cells at lower concentration. Overall, the study showed the potential therapeutic application of the peptide in pharma industry.
Collapse
|
29
|
Mejía-Argueta EL, Santillán Benítez JG, Ortiz-Reynoso M. Antimicrobial peptides, an alternative to combat bacterial resistance. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n2.77407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides of higher organisms have been studied for the past 25 years, and their importance as components of innate immunity is now well established. The essential simplicity of their chemical structure, along with the lower likelihood of developed resistance compared to conventional antibiotics, has made them attractive candidates for development as therapeutics. The objective of this review article is to describe the current relevance, main mechanisms presented, and the uses of antimicrobial peptides as new therapies in the clinical area. The information used was mainly compiled from scientific articles based on a systematic review of scientific papers with data on human antimicrobial peptides (AMPs) and their different applications, searching without date limits and only documents in English and Spanish. Gray literature was accessed through manual search, and no restrictions were made involving study design for a retrospective study. Although these products have not yet been commercialized, they have advantages over the currently available treatments since they are not expected to cause bacterial resistance due to their three-dimensional structure, amphipathic tendency, and cationic character; however, the technique of peptide production is still new and is in the early stages of innovation of new molecules.
Collapse
|
30
|
Liu Y, Sun Y, Li S, Liu M, Qin X, Chen X, Lin Y. Tetrahedral Framework Nucleic Acids Deliver Antimicrobial Peptides with Improved Effects and Less Susceptibility to Bacterial Degradation. NANO LETTERS 2020; 20:3602-3610. [PMID: 32272018 DOI: 10.1021/acs.nanolett.0c00529] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Lee H, Hwang JS, Lee DG. Analogs of Periplanetasin-4 Exhibit Deteriorated Membrane-Targeted Action. J Microbiol Biotechnol 2020; 30:382-390. [PMID: 32238758 PMCID: PMC9728181 DOI: 10.4014/jmb.1912.12044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periplanetasin-4 is an antimicrobial peptide with 13 amino acids identified in cockroaches. It has been reported to induce fungal cell death by apoptosis and membrane-targeted action. Analogs were designed by substituting arginine residues to modify the electrostatic and hydrophobic interactions accordingly and explore the effect of periplanetasin-4 through the increase of net charge and the decrease of hydrophobicity. The analogs showed lower activity than periplanetasin-4 against gram-positive and gram-negative bacteria. Similar to periplanetasin-4, the analogs exhibited slight hemolytic activity against human erythrocytes. Membrane studies, including determination of changes in membrane potential and permeability, and fluidity assays, revealed that the analogs disrupt less membrane integrity compared to periplanetasin-4. Likewise, when the analogs were treated to the artificial membrane model, the passage of molecules bigger than FD4 was difficult. In conclusion, arginine substitution could not maintain the membrane disruption ability of periplanetasin-4. The results indicated that the attenuation of hydrophobic interactions with the plasma membrane caused a reduction in the accumulation of the analogs on the membrane before the formation of electrostatic interactions. Our findings will assist in the further development of antimicrobial peptides for clinical use.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK2 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK2 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea,Corresponding author Phone: +82-53-950-5373 Fax: +82-53-955-5522 E-mail:
| |
Collapse
|
32
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
33
|
Chen X, Yi Y, You X, Liu J, Shi Q. High-Throughput Identification of Putative Antimicrobial Peptides from Multi-Omics Data of the Lined Seahorse ( Hippocampus erectus). Mar Drugs 2019; 18:md18010030. [PMID: 31905755 PMCID: PMC7024384 DOI: 10.3390/md18010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Lined seahorse (Hippocampus erectus), the most widely cultivated seahorse in China, has been in short supply because of its important medicinal value; meanwhile, unnatural deaths caused by various diseases (especially enteritis) have limited their practical large-scale aquaculture. Antimicrobial peptides (AMPs), as the best alternative to antibiotics, have been extensively applied in agricultural practices. In this study, we identified 290 putative AMP sequences from our previously published genome and transcriptome data of the lined seahorse. Among them, 267 are novel, and 118 were validated by our proteome data generated in the present study. It seems that there is a tissue preference in the distribution of AMP/AMP precursor transcripts, such as lectins in the male pouch. In addition, their transcription levels usually varied during development. Interestingly, the representative lectins kept extremely high levels at the pre-pregnancy stage while at relatively lower levels at other stages. Especially Lectin25, with the highest transcription levels and significant developmental changes, has been reported to be involved in seahorse and human pregnancy. The comparison of transcriptome data between one-day and three-month juveniles indicated that Hemoglobin2 (Hemo2) was significantly upregulated in the body, haslet, and brain. Our proteome data of female and male individuals revealed three putative AMP precursors with sexual specificity, including two male-biased cyclin-dependent kinases (CDK-like16 and CDK-like23) and one female-biased bovine pancreatic trypsin inhibitor 2 (BPTI2). In conclusion, our present high-throughput identification of putative AMP sequences from multi-omics (including genomics, transcriptomics, and proteomics) data provides an overview of AMPs in the popular lined seahorse, which lays a solid foundation for further development of AMP-based fish food additives and human drugs.
Collapse
Affiliation(s)
- Xiyang Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; (X.C.); (Y.Y.); (X.Y.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yunhai Yi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; (X.C.); (Y.Y.); (X.Y.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; (X.C.); (Y.Y.); (X.Y.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; (X.C.); (Y.Y.); (X.Y.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-185-6627-9826; Fax: +86-755-3630-7807
| |
Collapse
|
34
|
Wu J, Abbas HMK, Li J, Yuan Y, Liu Y, Wang G, Dong W. Cell Membrane-Interrupting Antimicrobial Peptides from Isatis indigotica Fortune Isolated by a Bacillus subtilis Expression System. Biomolecules 2019; 10:E30. [PMID: 31878275 PMCID: PMC7023251 DOI: 10.3390/biom10010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The situation of drug resistance has become more complicated due to the scarcity of plant resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides (AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs, I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system. We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal (Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric analysis revealed the possible mechanism of these peptides, which was to target and disrupt the bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are effective biocontrol agents and can be used as raw materials in the drug discovery field.
Collapse
Affiliation(s)
- Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Hafiz Muhammad Khalid Abbas
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiale Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| |
Collapse
|
35
|
ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183032. [DOI: 10.1016/j.bbamem.2019.183032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
|
36
|
Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep 2019; 9:13631. [PMID: 31541146 PMCID: PMC6754450 DOI: 10.1038/s41598-019-50061-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
One of the most important cellular events in arthropods is the moulting of the cuticle (ecdysis). This process allows them to grow until they reach sexual maturity. Nevertheless, during this stage, the animals are highly exposed to pathogens. Consequently, it can be assumed that arthropods counter with an efficient anti-infective strategy that facilitates their survival during ecdysis. Herein, we characterized a novel antimicrobial peptide called Pinipesin, present in the exuviae extract of the centipede Scolopendra subspinipes subspinipes. The antimicrobial activity of Pinipesin was tested. The haemolytic activity of the peptide was evaluated and its possible mechanism of action was investigated. Identification was carried out by mass spectrometry analysis. Pinipesin displayed potent antimicrobial effects against different microorganisms and showed low haemolytic effects against human erythrocytes at high concentrations. It has a monoisotopic mass of 1213.57 Da, its sequence exhibited high similarity with some cuticular proteins, and it might act intracellularly by interfering with protein synthesis. Our data suggest that Pinipesin might be part of a prophylactic immune response during the ecdysis process of centipedes. Therefore, it is a promising candidate for the development of non-conventional antibiotics that could help fight infectious diseases and represents an exciting discovery for this taxon.
Collapse
|
37
|
Liu H, Li S, Brennan CS, Wang Q. Antimicrobial activity of Arg–Ser–Ser against the food‐borne pathogenPseudomonas aeruginosa. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Huifan Liu
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong510225China
| | - Sufen Li
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong510225China
| | - Charles Stephen Brennan
- Food Science Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln Canterbury7647New Zealand
| | - Qin Wang
- Zhongkai University of Agriculture and Engineering Guangzhou Guangdong510225China
| |
Collapse
|
38
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
39
|
Tsutsumi-Arai C, Takakusaki K, Arai Y, Terada-Ito C, Takebe Y, Imamura T, Ide S, Tatehara S, Tokuyama-Toda R, Wakabayashi N, Satomura K. Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. PLoS One 2019; 14:e0217496. [PMID: 31136636 PMCID: PMC6538181 DOI: 10.1371/journal.pone.0217496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the cleansing effects of grapefruit seed extract (GSE) on biofilms of Candida albicans (C. albicans) formed on denture-base resin and the influence of GSE on the mechanical and surface characteristics of the resin. GSE solution diluted with distilled water to 0.1% (0.1% GSE) and 1% (1% GSE) and solutions with Polident® denture cleansing tablet dissolved in distilled water (Polident) or in 0.1% GSE solution (0.1% G+P) were prepared as cleansing solutions. Discs of acrylic resin were prepared, and the biofilm of C. albicans was formed on the discs. The discs with the biofilm were treated with each solution for 5 min at 25°C. After the treatment, the biofilm on the discs was analyzed using a colony forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). In order to assess the persistent cleansing effect, the discs treated with each solution for 5 min were aerobically incubated in Yeast Nitrogen Base medium for another 24 h. After incubation, the persistent effect was assessed by CFU assay. Some specimens of acrylic resin were immersed in each solution for 7 days, and changes in surface roughness (Ra), Vickers hardness (VH), flexural strength (FS), and flexural modulus (FM) were evaluated. As a result, the treatment with 1% GSE for 5 min almost completely eliminated the biofilm formed on the resin; whereas, the treatment with 0.1% GSE, Polident, and 0.1% G+P for 5 min showed a statistically significant inhibitory effect on biofilms. In addition, 0.1% GSE and 0.1% G+P exerted a persistent inhibitory effect on biofilms. Fluorescence microscopy indicated that Polident mainly induced the death of yeast, while the cleansing solutions containing at least 0.1% GSE induced the death of hyphae as well as yeast. SEM also revealed that Polident caused wrinkles, shrinkage, and some deep craters predominantly on the cell surfaces of yeast, while the solutions containing at least 0.1% GSE induced wrinkles, shrinkage, and some damage on cell surfaces of not only yeasts but also hyphae. No significant changes in Ra, VH, FS, or FM were observed after immersion in any of the solutions. Taken together, GSE solution is capable of cleansing C. albicans biofilms on denture-base resin and has a persistent inhibitory effect on biofilm development, without any deteriorations of resin surface.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Kensuke Takakusaki
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Yusuke Takebe
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takahiro Imamura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
40
|
Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem J 2019; 476:1267-1284. [DOI: 10.1042/bcj20180933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Communications between various organelle–organelles play an essential role in cell survival. The cross-talk between mitochondria and vacuoles comes up with the vital roles of the intercompartmental process. In this study, we found a couple of cell death features, membrane damage, and apoptosis using antimicrobial peptide from American Cockroach. Periplanetasin-4 (LRHKVYGYCVLGP-NH2) is a 13-mer peptide derived from Periplaneta americana and exhibits phosphatidylserine exposure and caspase activation without DNA fragmentation. Apoptotic features without DNA damage provide evidence that this peptide did not interact with DNA directly and exhibited dysfunction of mitochondria and vacuoles. Superoxide radicals were generated from mitochondria and converted to hydrogen peroxide. Despite the enhancement of catalase and total glutathione contents, oxidative damage disrupted intracellular contents. Periplanetasin-4 induced cell death associated with the production of superoxide radicals, calcium uptake in mitochondria and disorder of vacuoles, such as increased permeability and alkalization. While calcium movement from vacuoles to the mitochondria occurred, the cross-talk with these organelles proceeded and the inherent functionality was impaired. To sum up, periplanetasin-4 stimulates superoxide signal along with undermining the mitochondrial functions and interfering in communication with vacuoles.
Collapse
|
41
|
Lee H, Lee DG. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie 2019; 157:195-203. [DOI: 10.1016/j.biochi.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
42
|
Wang J, Wei R, Song R. Novel Antibacterial Peptides Isolated from the Maillard Reaction Products of Half-Fin Anchovy (Setipinna taty) Hydrolysates/Glucose and Their Mode of Action in Escherichia coli. Mar Drugs 2019; 17:E47. [PMID: 30634704 PMCID: PMC6356202 DOI: 10.3390/md17010047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction products (MRPs) of half-fin anchovy hydrolysates and glucose, named as HAHp(9.0)-G MRPs, were fractionated by size exclusion chromatography into three major fractions (F1⁻F3). F2, which demonstrated the strongest antibacterial activity against Escherichia coli (E. coli) and showed self-production of hydrogen peroxide (H₂O₂), was extracted by solid phase extraction. The hydrophobic extract of F2 was further isolated by reverse phase-high performance liquid chromatography into sub-fractions HE-F2-1 and HE-F2-2. Nine peptides were identified from HE-F2-1, and two peptides from HE-F2-2 using liquid chromatography-electrospray ionization/multi-stage mass spectrometry. Three peptides, FEDQLR (HGM-Hp1), ALERTF (HGM-Hp2), and RHPEYAVSVLLR (HGM-Hp3), with net charges of -1, 0, and +1, respectively, were synthesized. The minimal inhibitory concentration of these synthetic peptides was 2 mg/mL against E. coli. Once incubated with logarithmic growth phase of E. coli, HGM-Hp1 and HGM-Hp2 induced significant increases of both extracellular and intracellular H₂O₂ formation. However, HGM-Hp3 only dramatically enhanced intracellular H₂O₂ production in E. coli. The increased potassium ions in E. coli suspension after addition of HGM-Hp1 or HGM-Hp2 indicated the destruction of cell integrity via irreversible membrane damage. It is the first report of hydrolysates MRPs-derived peptides that might perform the antibacterial activity via inducing intracellular H₂O2 production.
Collapse
Affiliation(s)
- Jiaxing Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Rongbian Wei
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
43
|
Gao Z, Qu B, Yao L, Ma Z, Cui P, Zhang S. Identification and functional characterization of amphioxus Miple, ancestral type of vertebrate midkine/pleiotrophin homologues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:31-43. [PMID: 30096337 DOI: 10.1016/j.dci.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Midkine (MK) and pleiotrophin (PTN) are the only two members of heparin-binding growth factor family. MK/PTN homologues found from Drosophila to humans are shown to have antibacterial activities and their antibacterial domains are conserved during evolution. However, little is known about MK/PTN homologue in the basal chordate amphioxus, and overall, information regarding MK/PTN homologues is rather limited in invertebrates. In this study, we identified a single MK/PTN homologue in Branchiostoma japonicum, termed BjMiple, which has a novel domain structure of PTN-PTNr1-PTNr2, and represents the ancestral form of vertebrate MK/PTN family proteins. BjMiple was expressed mainly in the ovary in a tissue-dependent fashion, and its expression was remarkably up-regulated following challenge with bacteria or their signature molecules LPS and LTA, suggesting its involvement in antibacterial responses. Functional assays revealed that BjMiple had strong antimicrobial activity, capable of killing a panel of Gram-negative and Gram-positive bacteria via a membranolytic mechanism, including interaction with bacterial membrane via LPS and LTA, membrane depolarization and high intracellular levels of ROS. Importantly, strong antibacterial activity was localized in PTN42-61 and PTNr142-66. Additionally, BjMiple and its derived peptides PTN42-61 and PTNr142-66 were not cytotoxic to human RBCs and mammalian cells. Taken together, our study suggests that amphioxus Miple is the ancestral type of vertebrate MK/PTN family homologues, and can play important roles as innate peptide antibiotics, which renders it a promising template for the design of novel peptide antibiotics against multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Cui
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
44
|
Kong X, Yang M, Abbas HMK, Wu J, Li M, Dong W. Antimicrobial genes from Allium sativum and Pinellia ternata revealed by a Bacillus subtilis expression system. Sci Rep 2018; 8:14514. [PMID: 30266995 PMCID: PMC6162269 DOI: 10.1038/s41598-018-32852-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes.
Collapse
Affiliation(s)
- Xi Kong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mei Yang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mengge Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
45
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
46
|
Zhang Y, Cui P, Wang Y, Zhang S. Identification and bioactivity analysis of a newly identified defensin from the oyster Magallana gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:177-187. [PMID: 29733023 DOI: 10.1016/j.dci.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The relatively conserved sequences of signal peptides and proregions that antimicrobial peptides (AMPs) contain have been successfully used to search for and identify novel AMPs from databases within the same lineages of fish and amphibians and across different animal classes. If such an approach is applicable to invertebrate species such as oyster has not yet been tested so far. In this study, we found a cDNA from the digestive gland of the oyster Magallana gigas, designated Mgdefdg, which contains two exons interspaced by one intron. Mgdefdg coded for a protein with features characteristic of defensins. The mature peptide had the cysteine-stabilized α-helix/β-sheet motif (CSαβ) and the consensus pattern C-X5-6-C-X3-C-X4-6-C-X3-4-C-X7-8-C-X-C-X2-C forming potential disulfide linkages C1-C5, C2-C6, C3-C7 and C4-C8 in the predicted tertiary structure. Functional assays revealed that recombinant mature MgDefdg (rmMgDefdg) was able to kill the Gram-negative bacterium Aeromonas hydrophila and the Gram-positive bacterium Staphylococcus aureus, and to induce bacterial membrane/cytoplasmic damage. ELISA showed that rmMgDefdg had high affinity to both A. hydrophila and S. aureus as well as the microbe-associated molecular pattern molecules LPS and LTA. Moreover, rmMgDefdg was capable of causing bacterial membrane permeabilization and depolarization, and intracellular ROS increase. Additionally, rmMgDefdg was not cytotoxic to human red blood cells and murine RAW264.7 cells. Taken together, our results indicate that MgDefdg is a previously uncharacterized defensin with membrane selectivity towards bacterial cells. It also shows that the use of conserved sequences of signal peptides of defensins can be an effective tool to identify potential defensins across different animal genera in invertebrates.
Collapse
Affiliation(s)
- Yubo Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
47
|
Xing K, Xing Y, Liu Y, Zhang Y, Shen X, Li X, Miao X, Feng Z, Peng X, Qin S. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata. Carbohydr Polym 2018; 192:95-103. [DOI: 10.1016/j.carbpol.2018.03.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
|
48
|
Wang Y, Cui P, Zhang Y, Yang Q, Zhang S. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria. FISH & SHELLFISH IMMUNOLOGY 2018; 77:100-111. [PMID: 29567140 DOI: 10.1016/j.fsi.2018.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The ever-growing concerns on multi-drug resistant (MDR) bacteria lead to urgent demands for novel antibiotics including antimicrobial peptides (AMPs). Pt5, a peptide consisting of the C-terminal 55 residues of zebrafish phosvitin, has been shown to function as an antibacterial agent. Here we used Pt5 as a template to design new AMPs by shortening the sequence and substituting with tryptophan (W) and lysine (K) at selected positions. Among the resultant Pt5-derived peptides, Pt5-1c showed the strongest antimicrobial activity against both Gram-negative and Gram-positive bacteria, including MDR bacteia, with the minimum inhibitory concentrations (MICs) ranging from 1.2 μM to 4.8 μM. Electron microscopic examination showed that Pt5-1c was able to kill the bacteria directly. ELISA revealed that Pt5-1c possessed high affinity to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Importantly, Pt5-1c was able to disrupt the bacterial membrane by a combined action of membrane depolarization and permeabilization, with little cytotoxicity to mammalian cells. Taken together, these findings suggest that Pt5-1c has considerable potential for future development as novel peptide antibiotics against MDR bacteria.
Collapse
Affiliation(s)
- Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yubo Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
49
|
Hou J, Liu Z, Cao S, Wang H, Jiang C, Hussain MA, Pang S. Broad-Spectrum Antimicrobial Activity and Low Cytotoxicity against Human Cells of a Peptide Derived from Bovine α S1-Casein. Molecules 2018; 23:E1220. [PMID: 29783753 PMCID: PMC6100444 DOI: 10.3390/molecules23051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/05/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
The primary objective of this study was to improve our understanding of the antimicrobial mechanism of protein-derived peptides and to provide evidence for protein-derived peptides as food bio-preservatives by examining the antimicrobial activities, low cytotoxicity, stabilities, and mechanism of Cp1 (LRLKKYKVPQL). In this study, the protein-derived peptide Cp1 was synthesized from bovine αS1-casein, and its potential use as a food biopreservative was indicated by the higher cell selectivity shown by 11-residue peptide towards bacterial cells than human RBCs. It also showed broad-spectrum antimicrobial activity, with minimum inhibitory concentrations (MICs) of 64⁻640 μM against both gram-positive and gram-negative bacteria. The peptide had low hemolytic activity (23.54%, 512 μM) as well as cytotoxicity. The results of fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that Cp1 exerted its activity by permeabilizing the microbial membrane and destroying cell membrane integrity. We found that Cp1 had broad-spectrum antimicrobial activity, low hemolytic activity, and cytotoxicity. The results also revealed that Cp1 could cause cell death by permeabilizing the cell membrane and disrupting membrane integrity. Overall, the findings presented in this study improve our understanding of the antimicrobial potency of Cp1 and provided evidence of the antimicrobial mechanisms of Cp1. The peptide Cp1 could have potential applications as a food biopreservative.
Collapse
Affiliation(s)
- Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Songsong Cao
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Haimei Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Chenggang Jiang
- Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.
| | - Muhammad Altaf Hussain
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Shiyue Pang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
50
|
Abstract
Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response.
Collapse
Affiliation(s)
- Heejeong Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science RDA, Jeonju, Republic of Korea
| | - Dong Gun Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|