1
|
Onishchenko NR, Moskovtsev AA, Kobanenko MK, Tretiakova DS, Alekseeva AS, Kolesov DV, Mikryukova AA, Boldyrev IA, Kapkaeva MR, Shcheglovitova ON, Bovin NV, Kubatiev AA, Tikhonova OV, Vodovozova EL. Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions. Pharmaceutics 2023; 15:1754. [PMID: 37376203 DOI: 10.3390/pharmaceutics15061754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.
Collapse
Affiliation(s)
- Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Maria K Kobanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Dmitry V Kolesov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Anna A Mikryukova
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina R Kapkaeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Olga N Shcheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
2
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
3
|
Milošević N, Rütter M, David A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:846065. [PMID: 35463298 PMCID: PMC9021548 DOI: 10.3389/fmedt.2022.846065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Endothelial cell adhesion molecules have long been proposed as promising targets in many pathologies. Despite promising preclinical data, several efforts to develop small molecule inhibitors or monoclonal antibodies (mAbs) against cell adhesion molecules (CAMs) ended in clinical-stage failure. In parallel, many well-validated approaches for targeting CAMs with nanomedicine (NM) were reported over the years. A wide range of potential applications has been demonstrated in various preclinical studies, from drug delivery to the tumor vasculature, imaging of the inflamed endothelium, or blocking immune cells infiltration. However, no NM drug candidate emerged further into clinical development. In this review, we will summarize the most advanced examples of CAM-targeted NMs and juxtapose them with known traditional drugs against CAMs, in an attempt to identify important translational hurdles. Most importantly, we will summarize the proposed strategies to enhance endothelial CAM targeting by NMs, in an attempt to offer a catalog of tools for further development.
Collapse
|
4
|
Tuzikov AB, Ryabukhina EV, Paramonov AS, Chizhov AO, Bovin NV, Vodovozova EL. A convenient route to conjugates of 1,2-diglycerides with functionalized oligoethylene glycol spacer arms. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhdanova KA, Savelyeva IO, Ezhov AV, Zhdanov AP, Zhizhin KY, Mironov AF, Bragina NA, Babayants AA, Frolova IS, Filippova NI, Scliankina NN, Scheglovitova ON. Novel Cationic Meso-Arylporphyrins and Their Antiviral Activity against HSV-1. Pharmaceuticals (Basel) 2021; 14:ph14030242. [PMID: 33800457 PMCID: PMC7999199 DOI: 10.3390/ph14030242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
This work is devoted to the search for new antiherpes simplex virus type 1 (HSV-1) drugs among synthetic tetrapyrroles and to an investigation of their antiviral properties under nonphotodynamic conditions. In this study, novel amphiphilic 5,10,15,20-tetrakis(4-(3-pyridyl-n-propanoyl)oxyphenyl)porphyrin tetrabromide (3a), 5,10,15,20-tetrakis(4-(6-pyridyl-n-hexanoyl)oxyphenyl)porphyrin tetrabromide (3b) and known 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetraiodide (TMePyP) were synthesized, and their dark antiviral activity in vitro against HSV-1 was studied. The influence of porphyrin’s nanosized delivery vehicles based on Pluronic F127 on anti-HSV-1 activity was estimated. All the received compounds 3a, 3b and TMePyP showed virucidal efficiency and had an effect on viral replication stages. The new compound 3b showed the highest antiviral activity, close to 100%, with the lowest concentration, while the maximum TMePyP activity was observed with a high concentration; porphyrin 3a was the least active. The inclusion of the synthesized compounds in Pluronic F-127 polymeric micelles had a noticeable effect on antiviral activity only at higher porphyrin concentrations. Action of the received compounds differs by influence on the early or later reproduction stages. While 3a and TMePyP acted on all stages of the viral replication cycle, porphyrin 3b inhibited viral replication during the early stages of infection. The resulting compounds are promising for the development of utilitarian antiviral agents and, possibly, medical antiviral drugs.
Collapse
Affiliation(s)
- Kseniya A. Zhdanova
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
- Correspondence: ; Tel.: +79-261-126-692
| | - Inga O. Savelyeva
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Artem V. Ezhov
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Pr. 31, Moscow 117907, Russia;
| | - Konstantin Yu. Zhizhin
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Pr. 31, Moscow 117907, Russia;
| | - Andrey F. Mironov
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Natal’ya A. Bragina
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Alla A. Babayants
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Irina S. Frolova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Nadezhda I. Filippova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Nadezhda N. Scliankina
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Olga N. Scheglovitova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| |
Collapse
|
7
|
Liposome Drug Delivery System across Endothelial Plasma Membrane: Role of Distance between Endothelial Cells and Blood Flow Rate. Molecules 2020; 25:molecules25081875. [PMID: 32325705 PMCID: PMC7222012 DOI: 10.3390/molecules25081875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
This paper discusses specific features of the interactions of small-diameter liposomes with the cytoplasmic membrane of endothelial cells using in silico methods. The movement pattern of the liposomal drug delivery system was modeled in accordance with the conditions of the near-wall layer of blood flow. Our simulation results show that the liposomes can become stuck in the intercellular gaps and even break down when the gap is reduced. Liposomes stuck in the gaps are capable of withstanding a shell deformation of ~15% with an increase in liposome energy by 26%. Critical deformation of the membrane gives an impetus to drug release from the liposome outward. We found that the liposomes moving in the near-wall layer of blood flow inevitably stick to the membrane. Liposome sticking on the membrane is accompanied by its gradual splicing with the membrane bilayer. This leads to a gradual drug release inside the cell.
Collapse
|
8
|
Jin F, Wang F. The physiological and pathological roles and applications of sialyl Lewis x, a common carbohydrate ligand of the three selectins. Glycoconj J 2020; 37:277-291. [DOI: 10.1007/s10719-020-09912-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
|
9
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
10
|
Chantarasrivong C, Higuchi Y, Tsuda M, Yamane Y, Hashida M, Konishi M, Komura N, Ando H, Yamashita F. Sialyl LewisX mimic-decorated liposomes for anti-angiogenic everolimus delivery to E-selectin expressing endothelial cells. RSC Adv 2019; 9:20518-20527. [PMID: 35515515 PMCID: PMC9065773 DOI: 10.1039/c9ra01943j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, we developed novel E-selectin-targeting liposomes, i.e., 3′-(1-carboxy)ethyl sialyl LewisX (3′-CE sLeX) mimic liposomes, for targeted delivery of everolimus (EVE) in anti-angiogenic therapy. We investigated the uptake and efficacy of these E-selectin targeting liposomes in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs). The uptake of EVE in 3′-CE sLeX mimic liposomes increased steadily and almost caught up with the uptake of plain EVE at 3 h, which was higher than that in PEGylated liposomes (PEG-liposomes). Inhibition of uptake by anti-E-selectin antibody suggested involvement of E-selectin-mediated endocytotic processes. Migration in cells treated with EVE/3′-CE sLeX mimic liposomes was suppressed by more than half when compared to the control. This treatment was also seen to significantly inhibit the formation of capillary tubes and networks. In addition, Thr389 phosphorylation of pS6 kinase, as a marker of mTOR activity, was remarkably suppressed to less than endogenous levels by EVE/3′-CE sLeX mimic liposomes. In conclusion, the present study demonstrated that EVE/3′-CE sLeX mimic liposomes were intracellularly taken up by E-selectin and prompted anti-angiogenic effects of EVE involved in the mTOR signaling pathway. However, moderate retention of EVE in the liposomes might limit the targeting ability of 3′-CE sLeX mimic liposomes. Novel E-selectin-targeting liposomes deliver everolimus to E-selectin expressing endothelial cells and accelerate its anti-angiogenic effect.![]()
Collapse
Affiliation(s)
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Masahiro Tsuda
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Yuuki Yamane
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Mitsuru Hashida
- Institute for Advanced Study
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Miku Konishi
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
- Gifu University
- Gifu 501-1193
- Japan
| | - Fumiyoshi Yamashita
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
11
|
Tretiakova DS, Onishchenko NR, Vostrova AG, Vodovozova EL. Interactions of liposomes carrying lipophilic prodrugs in the bilayer with blood plasma proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Affiliation(s)
- S. Henry
- Centre for Kode Technology Innovation; School of Engineering Computer & Mathematical Sciences; Auckland University of Technology; Auckland New Zealand
| | - H. Perry
- Centre for Kode Technology Innovation; School of Engineering Computer & Mathematical Sciences; Auckland University of Technology; Auckland New Zealand
| | - N. Bovin
- Centre for Kode Technology Innovation; School of Engineering Computer & Mathematical Sciences; Auckland University of Technology; Auckland New Zealand
| |
Collapse
|
13
|
Chantarasrivong C, Ueki A, Ohyama R, Unga J, Nakamura S, Nakanishi I, Higuchi Y, Kawakami S, Ando H, Imamura A, Ishida H, Yamashita F, Kiso M, Hashida M. Synthesis and Functional Characterization of Novel Sialyl LewisX Mimic-Decorated Liposomes for E-selectin-Mediated Targeting to Inflamed Endothelial Cells. Mol Pharm 2017; 14:1528-1537. [DOI: 10.1021/acs.molpharmaceut.6b00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chanikarn Chantarasrivong
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Akiharu Ueki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryutaro Ohyama
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Johan Unga
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shinya Nakamura
- Department of Pharmaceutical Sciences,
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae,
Higashi-Osaka, Osaka 577-8502, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences,
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae,
Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Gifu Center for Highly Advanced Integration
of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Gifu Center for Highly Advanced Integration
of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
- Institute for Integrated
Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Efimova AA, Chvalun SN, Kulebyakina AI, Kozlova EV, Yaroslavov AA. Synthesis and properties of conjugates involving liposomes, a linear polymer, and the micelle of a polylactide-poly(ethylene glycol) block copolymer. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|