1
|
Bin T, Venturoli G, Ghelli AM, Francia F. Use of bacterial photosynthetic vesicles to evaluate the effect of ionic liquids on the permeability of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184291. [PMID: 38296218 DOI: 10.1016/j.bbamem.2024.184291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non‑sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.
Collapse
Affiliation(s)
- Tancredi Bin
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), via Irnerio 46, Università di Bologna, I-40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
2
|
Liu XL, Chen MQ, Jiang YL, Gao RY, Wang ZJ, Wang P. Rhodobacter sphaeroides as a model to study the ecotoxicity of 1-alkyl-3-methylimidazolium bromide. Front Mol Biosci 2023; 10:1106832. [PMID: 36793784 PMCID: PMC9923006 DOI: 10.3389/fmolb.2023.1106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The purple non-sulfur bacterium Rhodobacter sphaeroides was selected as a biological model to investigate its response to the toxicity of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br), a type of ionic liquid (IL), with different alkyl chain lengths (n describes the number of carbon atoms in the alkyl chain). The inhibition of bacterial growth by [Cnmim]Br was positively correlated with n. Morphological characterization revealed that [Cnmim]Br caused cell membrane perforation. The signal amplitude of the electrochromic absorption band shift of endogenous carotenoids showed a negatively linear correlation with n, and the amplitude of the blue-shift of the B850 band in light-harvesting complex 2 showed a positively linear correlation with n. Furthermore, an increase in blocked ATP synthesis and increase in antioxidant enzyme activity were observed in chromatophores treated with ILs containing longer alkyl chains. In summary, the purple bacterium can be developed as a model to monitor ecotoxicity and examine the mechanism of IL toxicity.
Collapse
|
3
|
Beil S, Markiewicz M, Pereira CS, Stepnowski P, Thöming J, Stolte S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem Rev 2021; 121:13132-13173. [PMID: 34523909 DOI: 10.1021/acs.chemrev.0c01265] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.
Collapse
Affiliation(s)
- Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jorg Thöming
- Chemical Process Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
4
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
5
|
Kumar S, Scheidt HA, Kaur N, Kang TS, Gahlay GK, Huster D, Mithu VS. Effect of the Alkyl Chain Length of Amphiphilic Ionic Liquids on the Structure and Dynamics of Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12215-12223. [PMID: 31424219 DOI: 10.1021/acs.langmuir.9b02128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We compare the biophysical and structural aspects of the interaction of amphiphilic ionic liquids containing 1-alkyl-3-methylimidazolium cation ([CnMIM]+, n = 8, 12, or 16) with membranes composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG). Liposome affinity and permeabilization were determined using ζ-potential and fluorescence studies, correlated with the cytoxicity of [CnMIM]+Br- toward HeLa cell lines. Membrane affinity is strongest in the case of [C16MIM]+Br- followed by [C12MIM]+Br- and [C8MIM]+Br- for both membranes, and trends remained the same in the case of membrane permeability and cytotoxicity. Solid-state NMR spectroscopy was used to localize [CnMIM]+ inside the lipid bilayers and to study their impact on the head group and acyl chain structures and dynamics of the lipid molecules. The charged ring moiety of the [CnMIM]+ is localized in the lipid-water interface of the membranes irrespective of the chain length and membrane surface charge. While [C8MIM]+ binds the membrane most weakly, it induces the largest disorder in the lipid chain region. A lack of fast flip-flop motions of the amphiphiles in the case of long chain [C16MIM]+ is suggested to render the membrane unstable, which increases its permeability. Between the lipid molecules, the POPC membrane incurs larger disorder in lipid chain packing upon insertion of [CnMIM]+ molecules. The study provides structural details of the impact of increasing chain lengths in [CnMIM]+ on the structural properties of lipid bilayers.
Collapse
Affiliation(s)
| | - Holger A Scheidt
- Institut für Medizinische Physik und Biophysik , Leipzig University , Leipzig 04109 , Germany
| | | | | | | | - Daniel Huster
- Institut für Medizinische Physik und Biophysik , Leipzig University , Leipzig 04109 , Germany
| | | |
Collapse
|
6
|
Fan H, Jin M, Wang H, Xu Q, Xu L, Wang C, Du S, Liu H. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:155-165. [PMID: 30995569 DOI: 10.1016/j.envpol.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
Collapse
Affiliation(s)
- Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qianru Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Lei Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Chenxuanzi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
7
|
Mester P, Robben C, Witte AK, Kalb R, Ehling-Schulz M, Rossmanith P, Grunert T. FTIR Spectroscopy Suggests a Revised Mode of Action for the Cationic Side-Chain Effect of Ionic Liquids. ACS COMBINATORIAL SCIENCE 2019; 21:90-97. [PMID: 30596487 DOI: 10.1021/acscombsci.8b00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the past decades, ionic liquids (ILs) have gained considerable attention from the scientific community because of their versatile and designable properties. As a result, there are numerous IL applications, not only in organic synthesis, catalysis, or extraction but also as active pharmaceutical ingredients or novel antimicrobials. While considerable effort has been put into developing quantitative structure-activity relationship (QSAR) models for IL toxicity prediction, little is known about their actual mode of action. In this study, Fourier transform infrared (FTIR) spectroscopy is used to monitor IL induced molecular responses directly at the cellular level. Investigation of the well-known cationic alkyl side-chain effect (increasing side-chain length leads to increasing toxicity) of imidazolium- and ammonium-based ILs on two bacterial pathogens, enteropathogenic Escherichia coli (EPEC) and methicillin-resistant Staphylococcus aureus (MRSA), surprisingly revealed two distinct modes of action. Contrary to prior models, it was only for [TMC16A][Cl], where a molecular response in the membrane was found, while ILs with shorter side-chain lengths predominantly affected bacterial proteins. The results of this study highlight the importance of further direct investigations of the impact of ILs at the cellular level to improve toxicity prediction and assess the usefulness of spectroscopic methods, such as FTIR spectroscopy at achieving this goal.
Collapse
Affiliation(s)
- Patrick Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Christian Robben
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Anna K. Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Roland Kalb
- Proionic GmbH, Parkring 18, 8074 Grambach, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Kumar S, Scheidt HA, Kaur N, Kaur A, Kang TS, Huster D, Mithu VS. Amphiphilic Ionic Liquid-Induced Membrane Permeabilization: Binding Is Not Enough. J Phys Chem B 2018; 122:6763-6770. [DOI: 10.1021/acs.jpcb.8b03733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Anupreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Tejwant S. Kang
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Venus S. Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
10
|
Dołżonek J, Cho CW, Stepnowski P, Markiewicz M, Thöming J, Stolte S. Membrane partitioning of ionic liquid cations, anions and ion pairs - Estimating the bioconcentration potential of organic ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:378-389. [PMID: 28554027 DOI: 10.1016/j.envpol.2017.04.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 05/26/2023]
Abstract
Recent efforts have been directed towards better understanding the persistency and toxicity of ionic liquids (ILs) in the context of the "benign-by-design" approach, but the assessment of their bioaccumulation potential remains neglected. This paper reports the experimental membrane partitioning of IL cations (imidazolium, pyridinium, pyrrolidinium, phosphonium), anions ([C(CN)3]-, [B(CN)4]-, [FSO2)2N]-, [(C2F5)3PF3]-, [(CF3SO2)2N]-) and their combinations as a measure for estimating the bioconcentration factor (BCF). Both cations and anions can have a strong affinity for phosphatidylcholine bilayers, which is mainly driven by the hydrophobicity of the ions. This affinity is often reflected in the ecotoxicological impact. Our data revealed that the bioconcentration potential of IL cations and anions is much higher than expected from octanol-water-partitioning based estimations that have recently been presented. For some ILs, the membrane-water partition coefficient reached levels corresponding to BCFs that might become relevant in terms of the "B" (bioaccumulation potential) classification under REACH. However, this preliminary estimation need to be confirmed by in vivo bioconcentration studies.
Collapse
Affiliation(s)
- Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| | - Chul-Woong Cho
- School of Chemical Engineering, Chonbuk National University, Chonbuk, Jeonju 561-756, Republic of Korea
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marta Markiewicz
- Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
| | - Jorg Thöming
- Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| |
Collapse
|