1
|
Yakovliev V, Lev B. Impact of bacterial outer membrane and general porins on cyanide diffusion and biodegradation kinetics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136117. [PMID: 39427357 DOI: 10.1016/j.jhazmat.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
The present study focuses on the analysis of the diffusion process of various cyanide compounds through general porins and outer membranes of gram-negative bacteria. We demonstrate the impact of the compound-to-porin radius ratio, the charge of cyanide ion, the Donnan potential, the intrinsic porin potential, the number and length of general porins, the fraction of open channels, and the size of bacteria on the effective diffusion coefficients and permeability coefficients of cyanide compounds. Moreover, we report, for the first time, the procedure for comparison of the rate of cyanide diffusion across the outer membrane with the rate of cyanide biodegradation that allows establishing the conditions for which the biodegradation is a diffusion-limited process or the diffusion is a significantly faster process than biodegradation. We apply this procedure to several experimental studies and predict the range of extracellular cyanide concentrations for which diffusion is a significantly faster process than biodegradation. We also demonstrate how these results affect the theoretical view of the cyanide biodegradation kinetics.
Collapse
Affiliation(s)
- Vladyslav Yakovliev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine.
| | - Bohdan Lev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine; Condensed Matter Physics Department, J. Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, 19 Jadranska, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Sharma P, Ayappa KG. A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane. J Membr Biol 2022; 255:665-675. [PMID: 35960325 DOI: 10.1007/s00232-022-00258-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022]
Abstract
With rising bacterial resistance, antimicrobial peptides (AMPs) have been widely investigated as potential antibacterial molecules to replace conventional antibiotics. Our understanding of the molecular mechanisms for membrane disruption are largely based on AMP interactions with the inner phospholipid bilayers of both Gram-negative and Gram-positive bacteria. Mechanisms for AMP translocation across the outer membrane of Gram-negative bacteria composed of lipopolysaccharides and the asymmetric lipid bilayer are complicated by the secondary structure adopted by the peptide in the different membrane environments. We have employed atomistic molecular dynamics and umbrella-sampling simulations with an aggregate duration of [Formula: see text] 6 microseconds to obtain the free energy landscape of CM15 peptide translocating through the lipopolysaccharide region of Gram-negative bacteria, E. coli. The peptide has a favorable binding-free energy (- 130 kJ mol[Formula: see text]) in the O-antigen region with a large barrier (150 kJ mol[Formula: see text]) at the interface between the anionic core saccharides and upper bilayer leaflet made up of lipid-A molecules. Restraint-free molecular dynamics simulations show that the random coil structure is favored over the helix in both the extracellular aqueous region and the cation-rich core-saccharide regions of the outer membrane. The peptide and membrane properties are analyzed at each of the 100 ns duration of the umbrella-sampling windows to illustrate changes in peptide length, orientation, and hydration. Our study provides insights into the free energy landscape for the insertion of the AMP CM15 in the outer membrane of Gram-negative bacteria, and we discuss the implications of our findings with the broader question of how AMPs overcome this barrier during antimicrobial activity.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, 560012, India.,Eli Lilly Services India Private Limited, Bengaluru, 560103, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Prajapati JD, Pangeni S, Aksoyoglu MA, Winterhalter M, Kleinekathöfer U. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner. ACS NANO 2022; 16:7701-7712. [PMID: 35435659 DOI: 10.1021/acsnano.1c11471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The voltage-dependent transport through biological and artificial nanopores is being used in many applications such as DNA or protein sequencing and sensing. The primary approach to determine the transport has been to measure the temporal ion current fluctuations caused by solutes when applying external voltages. Crossing the nanoscale confinement in the presence of an applied electric field primarily relies on two factors, i.e., the electrophoretic drag and electroosmosis. The electroosmotic flow (EOF) is a voltage-dependent ion-associated flow of solvent molecules, i.e., usually water, and depends on many factors, such as pH, temperature, pore diameter, and also the concentration of ions. The exact interplay between these factors is so far poorly understood. In this joint experimental and computational study, we have investigated the dependence of the EOF on the concentration of the buffer salt by probing the transport of α-cyclodextrin molecules through the ΔCymA channel. For five different KCl concentrations in the range between 0.125 and 2 M, we performed applied-field molecular dynamics simulations and analyzed the ionic flow and the EOF across the ΔCymA pore. To our surprise, the concentration-dependent net ionic flux changes non-monotonically and nonlinearly and the EOF is seen to follow the same pattern. On the basis of these findings, we were able to correlate the concentration-dependent EOF with experimental kinetic constants for the translocation of α-cyclodextrin through the ΔCymA nanopore. Overall, the results further improve our understanding of the EOF-mediated transport through nanopores and show that the EOF needs to seriously be taken into consideration when analyzing the permeation of (neutral) substrates through nanopores.
Collapse
Affiliation(s)
| | - Sushil Pangeni
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
4
|
Golla VK, Piselli C, Kleinekathöfer U, Benz R. Permeation of Fosfomycin through the Phosphate-Specific Channels OprP and OprO of Pseudomonas aeruginosa. J Phys Chem B 2022; 126:1388-1403. [PMID: 35138863 DOI: 10.1021/acs.jpcb.1c08696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for many nosocomial infections. It is quite resistant to various antibiotics, caused by the absence of general diffusion pores in the outer membrane. Instead, it contains many substrate-specific channels. Among them are the two phosphate- and pyrophosphate-specific porins OprP and OprO. Phosphonic acid antibiotics such as fosfomycin and fosmidomycin seem to be good candidates for using these channels to enter P. aeruginosa bacteria. Here, we investigated the permeation of fosfomycin through OprP and OprO using electrophysiology and molecular dynamics (MD) simulations. The results were compared to those of the fosmidomycin translocation, for which additional MD simulations were performed. In the electrophysiological approach, we noticed a higher binding affinity of fosfomycin than of fosmidomycin to OprP and OprO. In MD simulations, the ladder of arginine residues and the cluster of lysine residues play an important role in the permeation of fosfomycin through the OprP and OprO channels. Molecular details on the permeation of fosfomycin through OprP and OprO channels were derived from MD simulations and compared to those of fosmidomycin translocation. In summary, this study demonstrates that the selectivity of membrane channels can be employed to improve the permeation of antibiotics into Gram-negative bacteria and especially into resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
5
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
6
|
Haloi N, Vasan AK, Geddes EJ, Prasanna A, Wen PC, Metcalf WW, Hergenrother PJ, Tajkhorshid E. Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge. Chem Sci 2021; 12:15028-15044. [PMID: 34909143 PMCID: PMC8612397 DOI: 10.1039/d1sc04445a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance of Gram-negative bacteria is largely attributed to the low permeability of their outer membrane (OM). Recently, we disclosed the eNTRy rules, a key lesson of which is that the introduction of a primary amine enhances OM permeation in certain contexts. To understand the molecular basis for this finding, we perform an extensive set of molecular dynamics (MD) simulations and free energy calculations comparing the permeation of aminated and amine-free antibiotic derivatives through the most abundant OM porin of E. coli, OmpF. To improve sampling of conformationally flexible drugs in MD simulations, we developed a novel, Monte Carlo and graph theory based algorithm to probe more efficiently the rotational and translational degrees of freedom visited during the permeation of the antibiotic molecule through OmpF. The resulting pathways were then used for free-energy calculations, revealing a lower barrier against the permeation of the aminated compound, substantiating its greater OM permeability. Further analysis revealed that the amine facilitates permeation by enabling the antibiotic to align its dipole to the luminal electric field of the porin and form favorable electrostatic interactions with specific, highly-conserved charged residues. The importance of these interactions in permeation was further validated with experimental mutagenesis and whole cell accumulation assays. Overall, this study provides insights on the importance of the primary amine for antibiotic permeation into Gram-negative pathogens that could help the design of future antibiotics. We also offer a new computational approach for calculating free-energy of processes where relevant molecular conformations cannot be efficiently captured.
Collapse
Affiliation(s)
- Nandan Haloi
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Archit Kumar Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emily J Geddes
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Arjun Prasanna
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
7
|
Jiang W, Lin YC, Botello-Smith W, Contreras JE, Harris AL, Maragliano L, Luo YL. Free energy and kinetics of cAMP permeation through connexin26 via applied voltage and milestoning. Biophys J 2021; 120:2969-2983. [PMID: 34214529 DOI: 10.1016/j.bpj.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
The connexin family is a diverse group of highly regulated wide-pore channels permeable to biological signaling molecules. Despite the critical roles of connexins in mediating selective molecular signaling in health and disease, the basis of molecular permeation through these pores remains unclear. Here, we report the thermodynamics and kinetics of binding and transport of a second messenger, adenosine-3',5'-cyclophosphate (cAMP), through a connexin26 hemichannel (Cx26). First, inward and outward fluxes of cAMP molecules solvated in KCl solution were obtained from 4 μs of ± 200 mV simulations. These fluxes data yielded a single-channel permeability of cAMP and cAMP/K+ permeability ratio consistent with experimentally measured values. The results from voltage simulations were then compared with the potential of mean force (PMF) and the mean first passage times (MFPTs) of a single cAMP without voltage, obtained from a total of 16.5 μs of Voronoi-tessellated Markovian milestoning simulations. Both the voltage simulations and the milestoning simulations revealed two cAMP-binding sites, for which the binding constants KD and dissociation rates koff were computed from PMF and MFPTs. The protein dipole inside the pore produces an asymmetric PMF, reflected in unequal cAMP MFPTs in each direction once within the pore. The free energy profiles under opposite voltages were derived from the milestoning PMF and revealed the interplay between voltage and channel polarity on the total free energy. In addition, we show how these factors influence the cAMP dipole vector during permeation, and how cAMP affects the local and nonlocal pore diameter in a position-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Wesley Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California.
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| | - Luca Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
8
|
Zhang Z, Ryoo D, Balusek C, Acharya A, Rydmark MO, Linke D, Gumbart JC. Inward-facing glycine residues create sharp turns in β-barrel membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183662. [PMID: 34097860 DOI: 10.1016/j.bbamem.2021.183662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
The transmembrane region of outer-membrane proteins (OMPs) of Gram-negative bacteria are almost exclusively β-barrels composed of between 8 and 26 β-strands. To explore the relationship between β-barrel size and shape, we modeled and simulated engineered variants of the Escherichia coli protein OmpX with 8, 10, 12, 14, and 16 β-strands. We found that while smaller barrels maintained a roughly circular shape, the 16-stranded variant developed a flattened cross section. This flat cross section impeded its ability to conduct ions, in agreement with previous experimental observations. Flattening was determined to arise from the presence of inward-facing glycines at sharp turns in the β-barrel. An analysis of all simulations revealed that glycines, on average, make significantly smaller angles with residues on neighboring strands than all other amino acids, including alanine, and create sharp turns in β-barrel cross sections. This observation was generalized to 119 unique structurally resolved OMPs. We also found that the fraction of glycines in β-barrels decreases as the strand number increases, suggesting an evolutionary role for the addition or removal of glycine in OMP sequences.
Collapse
Affiliation(s)
- Zijian Zhang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | | | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America.
| |
Collapse
|
9
|
Dai Y, Ma H, Wu M, Welsch TA, Vora SR, Ren D, Nangia S. Development of the computational antibiotic screening platform (CLASP) to aid in the discovery of new antibiotics. SOFT MATTER 2021; 17:2725-2736. [PMID: 33533373 DOI: 10.1039/d0sm02035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics-biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem-through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.
Collapse
Affiliation(s)
- Yinghui Dai
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Huilin Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Meishan Wu
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Tory Alane Welsch
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Soor Rajiv Vora
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
10
|
Golla VK, Prajapati JD, Kleinekathöfer U. Millisecond-Long Simulations of Antibiotics Transport through Outer Membrane Channels. J Chem Theory Comput 2021; 17:549-559. [PMID: 33378186 DOI: 10.1021/acs.jctc.0c01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To reach their target site inside Gram-negative bacteria, almost all antibiotics need to cross the outer membrane. Computational modeling of such processes can be numerically demanding due to the size of the systems and especially due to the timescales involved. Recently, a hybrid Brownian and molecular dynamics approach, i.e., Brownian dynamics including explicit atoms (BRODEA), has been developed and evaluated for studying the transport of monoatomic ions through membrane channels. Later on, this numerically efficient scheme has been applied to determine the free energy surfaces of the ciprofloxacin and enrofloxacin translocation through the porin OmpC using temperature-accelerated simulations. To improve the usability and accuracy of the approach, schemes to approximate the position-dependent diffusion constant of the molecule while traversing the pore had to be established. To this end, we have studied the translocation of the charged phosphonic acid antibiotic fosfomycin through the porin OmpF from Escherichia coli devising and benchmarking several diffusion models. To test the efficiency and sensitivity of these models, the effect of OmpF mutations on the permeation of fosfomycin was analyzed. Permeation events have been recorded over millisecond-long biased and unbiased simulations, from which thermodynamics and kinetics quantities of the translocation processes were determined. As a result, the use of the BRODEA approach, together with the appropriate diffusion model, was seen to accurately reproduce the findings observed in electrophysiology experiments and all-atom molecular dynamics simulations. These results suggest that the BRODEA approach can become a valuable tool for screening numerous compounds to evaluate their outer membrane permeability, a property important in the development of new antibiotics.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
11
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
12
|
Richter R, Kamal M, García-Rivera MA, Kaspar J, Junk M, Elgaher WA, Srikakulam SK, Gress A, Beckmann A, Grißmer A, Meier C, Vielhaber M, Kalinina O, Hirsch AK, Hartmann RW, Brönstrup M, Schneider-Daum N, Lehr CM. A hydrogel-based in vitro assay for the fast prediction of antibiotic accumulation in Gram-negative bacteria. Mater Today Bio 2020; 8:100084. [PMID: 33313504 PMCID: PMC7720078 DOI: 10.1016/j.mtbio.2020.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
The pipeline of antibiotics has been for decades on an alarmingly low level. Considering the steadily emerging antibiotic resistance, novel tools are needed for early and easy identification of effective anti-infective compounds. In Gram-negative bacteria, the uptake of anti-infectives is especially limited. We here present a surprisingly simple in vitro model of the Gram-negative bacterial envelope, based on 20% (w/v) potato starch gel, printed on polycarbonate 96-well filter membranes. Rapid permeability measurements across this polysaccharide hydrogel allowed to correctly predict either high or low accumulation for all 16 tested anti-infectives in living Escherichia coli. Freeze-fracture TEM supports that the macromolecular network structure of the starch hydrogel may represent a useful surrogate of the Gram-negative bacterial envelope. A random forest analysis of in vitro data revealed molecular mass, minimum projection area, and rigidity as the most critical physicochemical parameters for hydrogel permeability, in agreement with reported structural features needed for uptake into Gram-negative bacteria. Correlating our dataset of 27 antibiotics from different structural classes to reported MIC values of nine clinically relevant pathogens allowed to distinguish active from nonactive compounds based on their low in vitro permeability specifically for Gram-negatives. The model may help to identify poorly permeable antimicrobial candidates before testing them on living bacteria.
Collapse
Affiliation(s)
- Robert Richter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Mohamed.A.M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Mariel A. García-Rivera
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Jerome Kaspar
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Maximilian Junk
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Walid A.M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Sanjay Kumar Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Alexander Gress
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alexander Grißmer
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Michael Vielhaber
- Institute of Engineering Design, Saarland University, 66123 Saarbrücken, Germany
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Wang J, Prajapati JD, Kleinekathöfer U, Winterhalter M. Dynamic interaction of fluoroquinolones with magnesium ions monitored using bacterial outer membrane nanopores. Chem Sci 2020; 11:10344-10353. [PMID: 34094296 PMCID: PMC8162440 DOI: 10.1039/d0sc03486j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/30/2020] [Indexed: 01/05/2023] Open
Abstract
Divalent ions are known to have a severe effect on the translocation of several antibiotic molecules into (pathogenic) bacteria. In the present study we have investigated the effect of divalent ions on the permeability of norfloxacin across the major outer membrane channels from E. coli (OmpF and OmpC) and E. aerogenes (Omp35 and Omp36) at the single channel level. To understand the rate limiting steps in permeation, we reconstituted single porins into planar lipid bilayers and analyzed the ion current fluctuations caused in the presence of norfloxacin. Moreover, to obtain an atomistic view, we complemented the experiments with millisecond-long free energy calculations based on temperature-accelerated Brownian dynamics simulations to identify the most probable permeation pathways of the antibiotics through the respective pores. Both, the experimental analysis and the computational modelling, suggest that norfloxacin is able to permeate through the larger porins, i.e., OmpF, OmpC, and Omp35, whereas it only binds to the slightly narrower porin Omp36. Moreover, divalent ions can bind to negatively charged residues inside the porin, reversing the ion selectivity of the pore. In addition, the divalent ions can chelate with the fluoroquinolone molecules and alter their physicochemical properties. The results suggest that the conjugation with either pores or molecules must break when the antibiotic molecules pass the lumen of the porin, with the conjugation to the antibiotic being more stable than that to the respective pore. In general, the permeation or binding process of fluoroquinolones in porins occurs irrespective of the presence of divalent ions, but the presence of divalent ions can vary the kinetics significantly. Thus, a detailed investigation of the interplay of divalent ions with antibiotics and pores is of key importance in developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Jiajun Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | | | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen 28759 Bremen Germany
| |
Collapse
|
14
|
Prajapati JD, Mele C, Aksoyoglu MA, Winterhalter M, Kleinekathöfer U. Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field. J Chem Inf Model 2020; 60:3188-3203. [DOI: 10.1021/acs.jcim.0c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Crystal Mele
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
15
|
Golla VK, Prajapati JD, Joshi M, Kleinekathöfer U. Exploration of Free Energy Surfaces Across a Membrane Channel Using Metadynamics and Umbrella Sampling. J Chem Theory Comput 2020; 16:2751-2765. [PMID: 32167296 DOI: 10.1021/acs.jctc.9b00992] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To reach their site of action, it is essential for antibiotic molecules to cross the bacterial outer membrane. The progress of enhanced sampling techniques in molecular dynamics simulations enables us to understand these translocations at an atomic level. To this end, calculations of free energy surfaces for these permeation processes are of key importance. Herein, we investigate the translocation of a variety of anionic solutes through the outer membrane pore OprO of the Gram-negative bacterium Pseudomonas aeruginosa using the metadynamics and umbrella sampling techniques at the all-atom level. Free energy calculations have been performed employing these two distinct methods in order to illustrate the difference in computed free energies, if any. The investigated solutes range from a single atomic chloride ion over a multiatomic monophosphate ion to a more bulky fosmidomycin antibiotic. The role of complexity of the permeating solutes in estimating accurate free energy profiles is demonstrated by performing extensive convergence analysis. For simple monatomic ions, good agreement between the well-tempered metadynamics and the umbrella sampling approaches is achieved, while for the permeation of the monophosphate ion differences start to appear. In the case of larger molecules such as fosmidomycin it is a tough challenge to achieve converged free energy profiles. This issue is mainly due to neglecting orthogonal degrees of freedom during the free energy calculations. Nevertheless, the freely driven metadynamics approach leads to clearly advantageous results. Additionally, atomistic insights of the translocation mechanisms of all three solutes are discussed.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Manas Joshi
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
16
|
Li X, Lee KH, Shorkey S, Chen J, Chen M. Different Anomeric Sugar Bound States of Maltose Binding Protein Resolved by a Cytolysin A Nanopore Tweezer. ACS NANO 2020; 14:1727-1737. [PMID: 31995359 PMCID: PMC7162534 DOI: 10.1021/acsnano.9b07385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conformational changes of proteins are essential to their functions. Yet it remains challenging to measure the amplitudes and time scales of protein motions. Here we show that the cytolysin A (ClyA) nanopore was used as a molecular tweezer to trap a single maltose-binding protein (MBP) within its lumen, which allows conformation changes to be monitored as electrical current fluctuations in real time. In contrast to the current two state binding model, the current measurements revealed three distinct ligand-bound states for MBP in the presence of reducing saccharides. Our analysis reveals that these three states represented MBP bound to different isomers of reducing sugars. These findings contribute to the understanding of the mechanism of substrate recognition by MBP and illustrate that the nanopore tweezer is a powerful, label-free, single-molecule approach for studying protein conformational dynamics under functional conditions.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kuo Hao Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Spencer Shorkey
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
17
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
18
|
Rózsa ZB, Németh LJ, Jójárt B, Nehéz K, Viskolcz B, Szőri M. Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models. J Phys Chem B 2019; 123:7869-7884. [DOI: 10.1021/acs.jpcb.9b04313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zsófia Borbála Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Lukács József Németh
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Balázs Jójárt
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Károly Nehéz
- Department of Information Engineering, University of Miskolc, Miskolc-Egyetemváros Informatics Building, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| |
Collapse
|
19
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
20
|
Pieńko T, Trylska J. Computational Methods Used to Explore Transport Events in Biological Systems. J Chem Inf Model 2019; 59:1772-1781. [DOI: 10.1021/acs.jcim.8b00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, S. Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Zhou X, Zhu F. Calculating Single-Channel Permeability and Conductance from Transition Paths. J Chem Inf Model 2019; 59:777-785. [PMID: 30688447 DOI: 10.1021/acs.jcim.8b00914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Permeability and conductance are the major transport properties of membrane channels, quantifying the rate of channel crossing by the solute. It is highly desirable to calculate these quantities in all-atom molecular dynamics simulations. When the solute crossing rate is low, however, direct methods would require prohibitively long simulations, and one thus typically adopts alternative strategies based on the free energy of single solute along the channel. Here we present a new method to calculate the crossing rate by initiating unbiased trajectories in which the solute is released at the free energy barrier. In this method, the total time the solute spends in the barrier region during a channel crossing (transition path) is used to determine the kinetic rate. Our method achieves a significantly higher statistical accuracy than the classical reactive flux method, especially for diffusive barrier crossing. Our test on ion permeation through a carbon nanotube verifies that the method correctly predicts the crossing rate and reproduces the spontaneous crossing events as in long equilibrium simulations. The rigorous and efficient method here will be valuable for quantitatively connecting simulations to experimental measurement of membrane channels.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Physics , Zhejiang Normal University , Jinhua 321004 , China.,Department of Physics , Indiana University Purdue University Indianapolis , 402 North Blackford Street , Indianapolis , Indiana 46202 , United States
| | - Fangqiang Zhu
- Department of Physics , Indiana University Purdue University Indianapolis , 402 North Blackford Street , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
22
|
Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J 2019; 116:258-269. [PMID: 30616836 PMCID: PMC6350074 DOI: 10.1016/j.bpj.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | | | - Lorraine Benier
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.
| |
Collapse
|
23
|
Ahumada JC, Alemán C, Soto-Delgado J, Torras J. Ion–Ion Repulsions and Charge-Shielding Effects Dominate the Permeation Mechanism through the OmpF Porin Channel. J Phys Chem B 2018; 123:86-94. [DOI: 10.1021/acs.jpcb.8b09549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Carlos Ahumada
- Department of Chemical Engineering (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10−14, 08019 Barcelona, Spain
- Departamento de Química, Universidad Técnica Federico Santa María, Casilla 110-V, 2390123 Valparaíso, Chile
| | - Carlos Alemán
- Department of Chemical Engineering (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10−14, 08019 Barcelona, Spain
| | - Jorge Soto-Delgado
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, 2531015 Viña del Mar, Chile
| | - Juan Torras
- Department of Chemical Engineering (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10−14, 08019 Barcelona, Spain
| |
Collapse
|
24
|
Solano CJF, Prajapati JD, Pothula KR, Kleinekathöfer U. Brownian Dynamics Approach Including Explicit Atoms for Studying Ion Permeation and Substrate Translocation across Nanopores. J Chem Theory Comput 2018; 14:6701-6713. [DOI: 10.1021/acs.jctc.8b00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Carlos J. F. Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Jigneshkumar D. Prajapati
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
25
|
Checchetto V, Szabo I. Novel Channels of the Outer Membrane of Mitochondria: Recent Discoveries Change Our View. Bioessays 2018; 40:e1700232. [PMID: 29682771 DOI: 10.1002/bies.201700232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Indexed: 01/12/2023]
Abstract
Ion channels mediate ion flux across biological membranes and regulate important organellar and cellular tasks. A recent study revealed the presence of four new proteins, the MIM complex (composed by Mim1 and Mim2), Ayr1, OMC7, and OMC8, that are able to form ion-conducting channels in the outer mitochondria membrane (OMM). These findings strongly indicate that the OMM is endowed with many solute-specific channels, in addition to porins and known channels mediating protein import into mitochondria. These solute-specific channels provide essential pathways for the controlled transport of ions and metabolites and may thus add a further layer of specificity to the regulation of mitochondrial function at the organelle-cytosol and/or inter-organellar interface. Future studies will be required to fully understand the way(s) of regulation of these new channels and to integrate them into signaling pathways within the cells.
Collapse
Affiliation(s)
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua 35121, Italy
| |
Collapse
|
26
|
Monteiro R, Chafsey I, Leroy S, Chambon C, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin. J Proteomics 2018; 181:16-23. [PMID: 29609094 DOI: 10.1016/j.jprot.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. SIGNIFICANCE While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.
Collapse
Affiliation(s)
- Ricardo Monteiro
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Ingrid Chafsey
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Valérie Livrelli
- Centre de Recherche en Nutrition Humaine Auvergne, UMR UCA INSERM U1071, USC-INRA 2018, Clermont Université - Université d'Auvergne, Faculté de Pharmacie, CHU Clermont-Ferrand, Service Bactériologie Mycologie Parasitologie, Clermont-Ferrand, France
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
27
|
Lopes-Rodrigues M, Triguero J, Torras J, Perpète EA, Michaux C, Zanuy D, Alemán C. Influence of the surrounding environment in re-naturalized β-barrel membrane proteins. Biophys Chem 2018; 234:6-15. [DOI: 10.1016/j.bpc.2017.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|
28
|
Tamburrino G, Llabrés S, Vickery ON, Pitt SJ, Zachariae U. Modulation of the Neisseria gonorrhoeae drug efflux conduit MtrE. Sci Rep 2017; 7:17091. [PMID: 29213101 PMCID: PMC5719041 DOI: 10.1038/s41598-017-16995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.
Collapse
Affiliation(s)
- Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Owen N Vickery
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK.
| |
Collapse
|
29
|
Westfall DA, Krishnamoorthy G, Wolloscheck D, Sarkar R, Zgurskaya HI, Rybenkov VV. Bifurcation kinetics of drug uptake by Gram-negative bacteria. PLoS One 2017; 12:e0184671. [PMID: 28926596 PMCID: PMC5604995 DOI: 10.1371/journal.pone.0184671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cell envelopes of many bacteria consist of two membranes studded with efflux transporters. Such organization protects bacteria from the environment and gives rise to multidrug resistance. We report a kinetic model that accurately describes the permeation properties of this system. The model predicts complex non-linear patterns of drug uptake complete with a bifurcation, which recapitulate the known experimental anomalies. We introduce two kinetic parameters, the efflux and barrier constants, which replace those of Michaelis and Menten for trans-envelope transport. Both compound permeation and efflux display transitions, which delineate regimes of efficient and inefficient efflux. The first transition is related to saturation of the transporter by the compound and the second one behaves as a bifurcation and involves saturation of the outer membrane barrier. The bifurcation was experimentally observed in live bacteria. We further found that active efflux of a drug can be orders of magnitude faster than its diffusion into a cell and that the efficacy of a drug depends both on its transport properties and therapeutic potency. This analysis reveals novel physical principles in the behavior of the cellular envelope, creates a framework for quantification of small molecule permeation into bacteria, and should invigorate structure-activity studies of novel antibiotics.
Collapse
Affiliation(s)
- David A. Westfall
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
| | - Ganesh Krishnamoorthy
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
| | - Rupa Sarkar
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
- * E-mail: (VVR); (HIZ)
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Parkway, Norman, OK, United States of America
- * E-mail: (VVR); (HIZ)
| |
Collapse
|
30
|
Ganguly S, Kesireddy A, Bárcena-Uribarri I, Kleinekathöfer U, Benz R. Conversion of OprO into an OprP-like Channel by Exchanging Key Residues in the Channel Constriction. Biophys J 2017; 113:829-834. [PMID: 28834719 DOI: 10.1016/j.bpj.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022] Open
Abstract
Under phosphate-limiting conditions, the channels OprP and OprO are induced and expressed in the outer membrane of Pseudomonas aeruginosa. Despite their large homology, the phosphate-specific OprP and the diphosphate-specific OprO pores show structural differences in their binding sites situated in the constriction region. Previously, it was shown that the mutation of amino acids in OprP (Y62F and Y114D) led to an exchange in substrate specificity similar to OprO. To support the role of these key amino acids in the substrate sorting of these specific channels, the reverse mutants for OprO (F62Y, D114Y, and F62Y/D114Y) were created in this study. The phosphate and diphosphate binding of the generated channels was studied in planar lipid bilayers. Our results show that mutations of key residues indeed reverse the substrate specificity of OprO to OprP and support the view that just a few strategically positioned amino acids are mainly responsible for its substrate specificity.
Collapse
Affiliation(s)
- Sonalli Ganguly
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.
| | - Anusha Kesireddy
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | - Iván Bárcena-Uribarri
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | | | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
31
|
Prajapati JD, Fernández Solano CJ, Winterhalter M, Kleinekathöfer U. Characterization of Ciprofloxacin Permeation Pathways across the Porin OmpC Using Metadynamics and a String Method. J Chem Theory Comput 2017; 13:4553-4566. [PMID: 28816443 DOI: 10.1021/acs.jctc.7b00467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rapid spreading of antimicrobial resistance in Gram-negative bacteria has become a major threat for humans as well as animals. As one of the main factors involved, the permeability of the outer membrane has attracted a great deal of attention recently. However, the knowledge regarding the translocation mechanisms for most available antibiotics is so far rather limited. Here, a theoretical study concerning the diffusion route of ciprofloxacin across the outer membrane porin OmpC from E. coli is presented. To this end, we establish a protocol to characterize meaningful permeation pathways by combining metadynamics with the zero-temperature string method. It was found that the lowest-energy pathway requires a reorientation of ciprofloxacin in the extracellular side of the porin before reaching the constriction region with its carboxyl group ahead. Several affinity sites have been identified, and their metastability has been evaluated using unbiased simulations. Such a detailed understanding is potentially very helpful in guiding the development of next generation antibiotics.
Collapse
Affiliation(s)
- Jigneshkumar Dahyabhai Prajapati
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Carlos José Fernández Solano
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| |
Collapse
|
32
|
Hsu PC, Bruininks BMH, Jefferies D, Cesar Telles de Souza P, Lee J, Patel DS, Marrink SJ, Qi Y, Khalid S, Im W. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 2017; 38:2354-2363. [PMID: 28776689 DOI: 10.1002/jcc.24895] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Yifei Qi
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| |
Collapse
|
33
|
Padhi S, Reddy LK, Priyakumar UD. pH-mediated gating and formate transport mechanism in the Escherichia coli formate channel. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1353691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Siladitya Padhi
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Lekkala Karthik Reddy
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| |
Collapse
|
34
|
Patel DS, Qi Y, Im W. Modeling and simulation of bacterial outer membranes and interactions with membrane proteins. Curr Opin Struct Biol 2017; 43:131-140. [DOI: 10.1016/j.sbi.2017.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/08/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
35
|
Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, Zheng H, Robinson CV, Winterhalter M, Kleinekathöfer U, Bolam DN, van den Berg B. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 2017; 541:407-411. [PMID: 28077872 DOI: 10.1038/nature20828] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 11/24/2016] [Indexed: 12/30/2022]
Abstract
The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota, which has an important role in human health and nutrition. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA-SusG. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC-SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a 'pedal bin' mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by members of the microbiota, an area of major importance for understanding human-microbiota symbiosis.
Collapse
Affiliation(s)
- Amy J Glenwright
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Karunakar R Pothula
- Jacobs University Bremen, Department of Physics & Earth Sciences, 28759 Bremen, Germany
| | - Satya P Bhamidimarri
- Jacobs University Bremen, Department of Life Sciences & Chemistry, 28759 Bremen, Germany
| | - Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Susan J Firbank
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hongjun Zheng
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Mathias Winterhalter
- Jacobs University Bremen, Department of Life Sciences & Chemistry, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Jacobs University Bremen, Department of Physics & Earth Sciences, 28759 Bremen, Germany
| | - David N Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
36
|
Zhdanov VP. Interpretation of amperometric kinetics of content release during contacts of vesicles with a lipid membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:461-470. [PMID: 27942741 DOI: 10.1007/s00249-016-1189-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The exocytotic pathway of secretion of molecules from cells includes transport by vesicles, tether-mediated fusion of vesicles with the plasma membrane accompanied by pore formation, and diffusion-mediated release of their contents via a pore to the outside. In related basic biophysical studies, vesicle-content release is tracked by measuring corresponding amperometric spikes. Although experiments of this type have a long history, the understanding of the underlying physics is still elusive. The present study elucidates the likely contribution of line energy, membrane tension and bending, osmotic pressure, hydration forces, and tethers to the potential energy for fusion-related pore formation and evolution. The overdamped Langevin equation is used to describe the pore dynamics, which are in turn employed to calculate the kinetics of content release and to interpret the shape of amperometric spikes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
37
|
Padhi S, Priyakumar UD. Urea-Aromatic Stacking and Concerted Urea Transport: Conserved Mechanisms in Urea Transporters Revealed by Molecular Dynamics. J Chem Theory Comput 2016; 12:5190-5200. [PMID: 27576044 DOI: 10.1021/acs.jctc.6b00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urea transporters are membrane proteins that selectively allow urea molecules to pass through. It is not clear how these transporters allow rapid conduction of urea, a polar molecule, in spite of the presence of a hydrophobic constriction lined by aromatic rings. The current study elucidates the mechanism that is responsible for this rapid conduction by performing free energy calculations on the transporter dvUT with a cumulative sampling time of about 1.3 μs. A parallel arrangement of aromatic rings in the pore enables stacking of urea with these rings, which, in turn, lowers the energy barrier for urea transport. Such interaction of the rings with urea is proposed to be a conserved mechanism across all urea-conducting proteins. The free energy landscape for the permeation of multiple urea molecules reveals an interplay between interurea interaction and the solvation state of the urea molecules. This is for the first time that multiple molecule permeation through any small molecule transporter has been modeled.
Collapse
Affiliation(s)
- Siladitya Padhi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Hyderabad 500032, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Hyderabad 500032, India
| |
Collapse
|
38
|
Gumbart JC, Noskov S. Membrane proteins: Where theory meets experiment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1553-5. [PMID: 27094366 DOI: 10.1016/j.bbamem.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
39
|
Pavlova A, Hwang H, Lundquist K, Balusek C, Gumbart JC. Living on the edge: Simulations of bacterial outer-membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1753-9. [PMID: 26826270 DOI: 10.1016/j.bbamem.2016.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/06/2023]
Abstract
Gram-negative bacteria are distinguished in part by a second, outer membrane surrounding them. This membrane is distinct from others, possessing an outer leaflet composed not of typical phospholipids but rather large, highly charged molecules known as lipopolysaccharides. Therefore, modeling the structure and dynamics of proteins embedded in the outer membrane requires careful consideration of their native environment. In this review, we examine how simulations of such outer-membrane proteins have evolved over the last two decades, culminating most recently in detailed, highly accurate atomistic models of the outer membrane. We also draw attention to how the simulations have coupled with experiments to produce novel insights unattainable through a single approach. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|