1
|
Malyško-Ptašinskė V, Nemeikaitė-Čėnienė A, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Malakauskaitė P, Lekešytė B, Novickij V. Threshold Interphase Delay for Bipolar Pulses to Prevent Cancellation Phenomenon during Electrochemotherapy. Int J Mol Sci 2024; 25:8774. [PMID: 39201461 PMCID: PMC11354671 DOI: 10.3390/ijms25168774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Electroporation-based procedures employing nanosecond bipolar pulses are commonly linked to an undesirable phenomenon known as the cancelation effect. The cancellation effect arises when the second pulse partially or completely neutralizes the effects of the first pulse, simultaneously diminishing cells' plasma membrane permeabilization and the overall efficiency of the procedure. Introducing a temporal gap between the positive and negative phases of the bipolar pulses during electroporation procedures may help to overcome the cancellation phenomenon; however, the exact thresholds are not yet known. Therefore, in this work, we have tested the influence of different interphase delay values (from 0 ms to 95 ms) using symmetric bipolar nanoseconds (300 and 500 ns) on cell permeabilization using 10 Hz, 100 Hz, and 1 kHz protocols. As a model mouse hepatoma, the MH-22a cell line was employed. Additionally, we conducted in vitro electrochemotherapy with cisplatin, employing reduced interphase delay values (0 ms and 0.1 ms) at 10 Hz. Cell plasma membrane permeabilization and viability dependence on a variety of bipolar pulsed electric field protocols were characterized. It was shown that it is possible to minimize bipolar cancellation, enabling treatment efficiency comparable to monophasic pulses with identical parameters. At the same time, it was highlighted that bipolar cancellation has a significant influence on permeabilization, while the effects on the outcome of electrochemotherapy are minimal.
Collapse
Affiliation(s)
- Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
| | - Aušra Nemeikaitė-Čėnienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eglė Mickevičiūtė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Barbora Lekešytė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| |
Collapse
|
2
|
Casciola M, Kaboudian A, Feaster TK, Narkar A, Blinova K. Pulsed electric field performance calculator tool based on an in vitro human cardiac model. Front Physiol 2024; 15:1395923. [PMID: 38911328 PMCID: PMC11190366 DOI: 10.3389/fphys.2024.1395923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Pulsed Field Ablation (PFA) is a novel non-thermal method for cardiac ablation, relying on irreversible electroporation induced by high-energy pulsed electric fields (PEFs) to create localized lesions in the heart atria. A significant challenge in optimizing PFA treatments is determining the lethal electric field threshold (EFT), which governs ablation volume and varies with PEF waveform parameters. However, the proprietary nature of device developer's waveform characteristics and the lack of standardized nonclinical testing methods have left optimal EFTs for cardiac ablation uncertain. Methods To address this gap, we introduced a laboratory protocol employing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in monolayer format to evaluate the impact of a range of clinically relevant biphasic pulse parameters on lethal EFT and adiabatic heating (AH). Cell death areas were assessed using fluorescent dyes and confocal microscopy, while lethal EFTs were quantified through comparison with electric field numerical simulations. Results and conclusion Our study confirmed a strong correlation between cell death in hiPSC-CMs and the number and duration of pulses in each train, with pulse repetition frequency exerting a comparatively weaker influence. Fitting of these results through machine learning algorithms were used to develop an open-source online calculator. By estimating lethal EFT and associated temperature increases for diverse pulse parameter combinations, this tool, once validated, has the potential to significantly reduce reliance on animal models during early-stage device de-risking and performance assessment. This tool also offers a promising avenue for advancing PFA technology for cardiac ablation medical devices to enhance patient outcomes.
Collapse
Affiliation(s)
- Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, United States
| | | | | | | | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
3
|
Scuderi M, Dermol-Cerne J, Scancar J, Markovic S, Rems L, Miklavcic D. The equivalence of different types of electric pulses for electrochemotherapy with cisplatin - an in vitro study. Radiol Oncol 2024; 58:51-66. [PMID: 38378034 PMCID: PMC10878774 DOI: 10.2478/raon-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 μs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT. MATERIALS AND METHODS We performed in vitro experiments, exposing Chinese hamster ovary (CHO) cells to conventional ECT pulses, high-frequency bipolar pulses, and millisecond pulses in the presence of different concentrations of cisplatin. We determined cisplatin uptake by inductively coupled plasma mass spectrometry and cisplatin cytotoxicity by the clonogenic assay. RESULTS We observed that the three tested types of pulses potentiate the uptake and cytotoxicity of cisplatin in an equivalent manner, provided that the electric field is properly adjusted for each pulse type. Furthermore, we quantified that the number of cisplatin molecules, resulting in the eradication of most cells, was 2-7 × 107 per cell. CONCLUSIONS High-frequency bipolar pulses and millisecond pulses can potentially be used in ECT to reduce pain and muscle contraction and increase the effect of the immune response in combination with gene electrotransfer, respectively.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Dermol-Cerne
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Stefan Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Peng W, Polajžer T, Yao C, Miklavčič D. Dynamics of Cell Death Due to Electroporation Using Different Pulse Parameters as Revealed by Different Viability Assays. Ann Biomed Eng 2024; 52:22-35. [PMID: 37704904 PMCID: PMC10761553 DOI: 10.1007/s10439-023-03309-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The mechanisms of cell death due to electroporation are still not well understood. Recent studies suggest that cell death due to electroporation is not an immediate all-or-nothing response but rather a dynamic process that occurs over a prolonged period of time. To investigate whether the dynamics of cell death depends on the pulse parameters or cell lines, we exposed different cell lines to different pulses [monopolar millisecond, microsecond, nanosecond, and high-frequency bipolar (HFIRE)] and then assessed viability at different times using different viability assays. The dynamics of cell death was observed by changes in metabolic activity and membrane integrity. In addition, regardless of pulse or cell line, the dynamics of cell death was observed only at high electroporation intensities, i.e., high pulse amplitudes and/or pulse number. Considering the dynamics of cell death, the clonogenic assay should remain the preferred viability assay for assessing viability after electroporation.
Collapse
Affiliation(s)
- Wencheng Peng
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Cvetkoska A, Maček-Lebar A, Polajžer T, Reberšek M, Upchurch W, Iaizzo PA, Sigg DC, Miklavčič D. The Effects of Interphase and Interpulse Delays and Pulse Widths on Induced Muscle Contractions, Pain and Therapeutic Efficacy in Electroporation-Based Therapies. J Cardiovasc Dev Dis 2023; 10:490. [PMID: 38132658 PMCID: PMC10744272 DOI: 10.3390/jcdd10120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Electroporation is used in medicine for drug and gene delivery, and as a nonthermal ablation method in tumor treatment and cardiac ablation. Electroporation involves delivering high-voltage electric pulses to target tissue; however, this can cause effects beyond the intended target tissue like nerve stimulation, muscle contractions and pain, requiring use of sedatives or anesthetics. It was previously shown that adjusting pulse parameters may mitigate some of these effects, but not how these adjustments would affect electroporation's efficacy. We investigated the effect of varying pulse parameters such as interphase and interpulse delay while keeping the duration and number of pulses constant on nerve stimulation, muscle contraction and assessing pain and electroporation efficacy, conducting experiments on human volunteers, tissue samples and cell lines in vitro. Our results show that using specific pulse parameters, particularly short high-frequency biphasic pulses with short interphase and long interpulse delays, reduces muscle contractions and pain sensations in healthy individuals. Higher stimulation thresholds were also observed in experiments on isolated swine phrenic nerves and human esophagus tissues. However, changes in the interphase and interpulse delays did not affect the cell permeability and survival, suggesting that modifying the pulse parameters could minimize adverse effects while preserving therapeutic goals in electroporation.
Collapse
Affiliation(s)
- Aleksandra Cvetkoska
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.C.); (A.M.-L.); (T.P.); (M.R.)
| | - Alenka Maček-Lebar
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.C.); (A.M.-L.); (T.P.); (M.R.)
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.C.); (A.M.-L.); (T.P.); (M.R.)
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.C.); (A.M.-L.); (T.P.); (M.R.)
| | - Weston Upchurch
- Visible Heart® Laboratories, Department of Surgery and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (W.U.); (P.A.I.)
| | - Paul A. Iaizzo
- Visible Heart® Laboratories, Department of Surgery and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (W.U.); (P.A.I.)
| | - Daniel C. Sigg
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN 55432, USA;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.C.); (A.M.-L.); (T.P.); (M.R.)
| |
Collapse
|
8
|
Kranjc M, Polajžer T, Novickij V, Miklavčič D. Determination of the Impact of High-Intensity Pulsed Electromagnetic Fields on the Release of Damage-Associated Molecular Pattern Molecules. Int J Mol Sci 2023; 24:14607. [PMID: 37834054 PMCID: PMC10572873 DOI: 10.3390/ijms241914607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by an externally applied pulsed magnetic field. Recently, HI-PEMF has been successfully used in the transfer of plasmid DNA and siRNA in vivo, with no or minimal infiltration of immune cells. In addition to gene electrotransfer, treatment with HI-PEMF has also shown potential for electrochemotherapy, where activation of the immune response contributes to the treatment outcome. The immune response can be triggered by immunogenic cell death that is characterized by the release of damage-associated molecular patterns (DAMPs) from damaged or/and dying cells. In this study, the release of the best-known DAMP molecules, i.e., adenosine triphosphate (ATP), calreticulin and high mobility group box 1 protein (HMBG1), after HI-PEMF treatment was investigated in vitro on three different cell lines of different tissue origin and compared with conventional electroporation treatment parameters. We have shown that HI-PEMF by itself does not cause the release of HMGB1 or calreticulin, whereas the release of ATP was detected immediately after HI-PEMF treatment. Our results indicate that HI-PEMF treatment causes no to minimal release of DAMP molecules, which results in minimal/limited activation of the immune response.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Plytinės g. 27, 10105 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| |
Collapse
|
9
|
Jacobs IV EJ, Graybill PM, Jana A, Agashe A, Nain AS, Davalos RV. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry 2023; 152:108415. [PMID: 37011476 DOI: 10.1016/j.bioelechem.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
The impact of cell shape on cell membrane permeabilization by pulsed electric fields is not fully understood. For certain applications, cell survival and recovery post-treatment is either desirable, as in gene transfection, electrofusion, and electrochemotherapy, or is undesirable, as in tumor and cardiac ablations. Understanding of how morphology affects cell viability post-electroporation may lead to improved electroporation methods. In this study, we use precisely aligned nanofiber networks within a microfluidic device to reproducibly generate elongated cells with controlled orientations to an applied electric field. We show that cell viability is significantly dependent on cell orientation, elongation, and spread. Further, these trends are dependent on the external buffer conductivity. Additionally, we see that cell survival for elongated cells is still supported by the standard pore model of electroporation. Lastly, we see that manipulating the cell orientation and shape can be leveraged for increased transfection efficiencies when compared to spherical cells. An improved understanding of cell shape and pulsation buffer conductivity may lead to improved methods for enhancing cell viability post-electroporation by engineering the cell morphology, cytoskeleton, and electroporation buffer conditions.
Collapse
|
10
|
Kim V, Semenov I, Kiester AS, Keppler MA, Ibey BL, Bixler JN, Colunga Biancatelli RML, Pakhomov AG. Control of the Electroporation Efficiency of Nanosecond Pulses by Swinging the Electric Field Vector Direction. Int J Mol Sci 2023; 24:10921. [PMID: 37446096 PMCID: PMC10341945 DOI: 10.3390/ijms241310921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as "bipolar cancellation," enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing the electric field in the pairs (180° direction change) caused 2-fold (1 Hz) or 20-fold (833 kHz) weaker electroporation than the train of single nsEPs. Reducing the angle between pulse directions in the pairs weakened cancellation and replaced it with facilitation at angles <160° (1 Hz) and <130° (833 kHz). Facilitation plateaued at about three-fold stronger electroporation compared to single pulses at 90-100° angle for both nsEP frequencies. The profound dependence of the efficiency on the angle enables novel protocols for highly selective focal electroporation at one electrode in a three-electrode array while avoiding effects at the other electrodes. Nanosecond-resolution imaging of cell membrane potential was used to link the selectivity to charging kinetics by co- and counter-directional nsEPs.
Collapse
Affiliation(s)
- Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Allen S. Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | | | - Bennett L. Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Joel N. Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23508, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
11
|
Kos B, Mattison L, Ramirez D, Cindrič H, Sigg DC, Iaizzo PA, Stewart MT, Miklavčič D. Determination of lethal electric field threshold for pulsed field ablation in ex vivo perfused porcine and human hearts. Front Cardiovasc Med 2023; 10:1160231. [PMID: 37424913 PMCID: PMC10326317 DOI: 10.3389/fcvm.2023.1160231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Pulsed field ablation is an emerging modality for catheter-based cardiac ablation. The main mechanism of action is irreversible electroporation (IRE), a threshold-based phenomenon in which cells die after exposure to intense pulsed electric fields. Lethal electric field threshold for IRE is a tissue property that determines treatment feasibility and enables the development of new devices and therapeutic applications, but it is greatly dependent on the number of pulses and their duration. Methods In the study, lesions were generated by applying IRE in porcine and human left ventricles using a pair of parallel needle electrodes at different voltages (500-1500 V) and two different pulse waveforms: a proprietary biphasic waveform (Medtronic) and monophasic 48 × 100 μs pulses. The lethal electric field threshold, anisotropy ratio, and conductivity increase by electroporation were determined by numerical modeling, comparing the model outputs with segmented lesion images. Results The median threshold was 535 V/cm in porcine ((N = 51 lesions in n = 6 hearts) and 416 V/cm in the human donor hearts ((N = 21 lesions in n = 3 hearts) for the biphasic waveform. The median threshold value was 368 V/cm in porcine hearts ((N = 35 lesions in n = 9 hearts) cm for 48 × 100 μs pulses. Discussion The values obtained are compared with an extensive literature review of published lethal electric field thresholds in other tissues and were found to be lower than most other tissues, except for skeletal muscle. These findings, albeit preliminary, from a limited number of hearts suggest that treatments in humans with parameters optimized in pigs should result in equal or greater lesions.
Collapse
Affiliation(s)
- Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lars Mattison
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - David Ramirez
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Helena Cindrič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel C. Sigg
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Paul A. Iaizzo
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Mark T. Stewart
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Polajžer T, Miklavčič D. Immunogenic Cell Death in Electroporation-Based Therapies Depends on Pulse Waveform Characteristics. Vaccines (Basel) 2023; 11:1036. [PMID: 37376425 DOI: 10.3390/vaccines11061036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, electroporation-based therapies such as electrochemotherapy (ECT), gene electrotransfer (GET) and irreversible electroporation (IRE) are performed with different but typical pulse durations-100 microseconds and 1-50 milliseconds. However, recent in vitro studies have shown that ECT, GET and IRE can be achieved with virtually any pulse duration (millisecond, microsecond, nanosecond) and pulse type (monopolar, bipolar-HFIRE), although with different efficiency. In electroporation-based therapies, immune response activation can affect treatment outcome, and the possibility of controlling and predicting immune response could improve the treatment. In this study, we investigated if different pulse durations and pulse types cause different or similar activations of the immune system by assessing DAMP release (ATP, HMGB1, calreticulin). Results show that DAMP release can be different when different pulse durations and pulse types are used. Nanosecond pulses seems to be the most immunogenic, as they can induce the release of all three main DAMP molecules-ATP, HMGB1 and calreticulin. The least immunogenic seem to be millisecond pulses, as only ATP release was detected and even that assumingly occurs due to increased permeability of the cell membrane. Overall, it seems that DAMP release and immune response in electroporation-based therapies can be controlled though pulse duration.
Collapse
Affiliation(s)
- Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
14
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
16
|
Lee D, Naikar JS, Chan SSY, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultralong recovery time in nanosecond electroporation systems enabled by orientational-disordering processes. NANOSCALE 2022; 14:7934-7942. [PMID: 35603889 DOI: 10.1039/d1nr07362a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The growing importance of applications based on molecular medicine and genetic engineering is driving the need to develop high-performance electroporation technologies. The electroporation phenomenon involves disruption of the cell for increasing membrane permeability. Although there is a multitude of research focused on exploring new electroporation techniques, the engineering of programming schemes suitable for these electroporation methods remains a challenge. Nanosecond stimulations could be promising candidates for these techniques owing to their ability to generate a wide range of biological responses. Here we control the membrane permeabilization of cancer cells using different numbers of electric-field pulses through orientational disordering effects. We then report our exploration of a few-volt nanosecond alternating-current (AC) stimulation method with an increased number of pulses for developing electroporation systems. A recovery time of ∼720 min was achieved, which is above the average of ∼76 min for existing electroporation methods using medium cell populations, as well as a previously unreported increased conductance with an increase in the number of pulses using weak bias amplitudes. All-atom molecular dynamics (MD) simulations reveal the orientation-disordering-facilitated increase in the degree of permeabilization. These findings highlight the potential of few-volt nanosecond AC-stimulation with an increased number of pulse strategies for the development of next-generation low-power electroporation systems.
Collapse
Affiliation(s)
- Denise Lee
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - J Shamita Naikar
- Office of Innovation, Changi General Hospital, Singapore, 529889
| | - Sophia S Y Chan
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Maria Prisca Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Lunna Li
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
- Office of Innovation, Changi General Hospital, Singapore, 529889
| |
Collapse
|
17
|
Muscle contractions and pain sensation accompanying high-frequency electroporation pulses. Sci Rep 2022; 12:8019. [PMID: 35577873 PMCID: PMC9110404 DOI: 10.1038/s41598-022-12112-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
To minimize neuromuscular electrical stimulation during electroporation-based treatments, the replacement of long monophasic pulses with bursts of biphasic high-frequency pulses in the range of microseconds was suggested in order to reduce muscle contraction and pain sensation due to pulse application. This treatment modality appeared under the term high-frequency electroporation (HF-EP), which can be potentially used for some clinical applications of electroporation such as electrochemotherapy, gene electrotransfer, and tissue ablation. In cardiac tissue ablation, which utilizes irreversible electroporation, the treatment is being established as Pulsed Field Ablation. While the reduction of muscle contractions was confirmed in multiple in vivo studies, the reduction of pain sensation in humans was not confirmed yet, nor was the relationship between muscle contraction and pain sensation investigated. This is the first study in humans examining pain sensation using biphasic high-frequency electroporation pulses. Twenty-five healthy individuals were subjected to electrical stimulation of the tibialis anterior muscle with biphasic high-frequency pulses in the range of few microseconds and both, symmetric and asymmetric interphase and interpulse delays. Our results confirm that biphasic high-frequency pulses with a pulse width of 1 or 2 µs reduce muscle contraction and pain sensation as opposed to currently used longer monophasic pulses. In addition, interphase and interpulse delays play a significant role in reducing the muscle contraction and/or pain sensation. The study shows that the range of the optimal pulse parameters may be increased depending on the prerequisites of the therapy. However, further evaluation of the biphasic pulse protocols presented herein is necessary to confirm the efficiency of the newly proposed HF-EP.
Collapse
|
18
|
Sugrue A, Maor E, Del-Carpio Munoz F, Killu AM, Asirvatham SJ. Cardiac ablation with pulsed electric fields: principles and biophysics. Europace 2022; 24:1213-1222. [PMID: 35426908 DOI: 10.1093/europace/euac033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Pulsed electric fields (PEFs) have emerged as an ideal cardiac ablation modality. At present numerous clinical trials in humans are exploring PEF as an ablation strategy for both atrial and ventricular arrhythmias, with early data showing significant promise. As this is a relatively new technology there is limited understanding of its principles and biophysics. Importantly, PEF biophysics and principles are starkly different to current energy modalities (radiofrequency and cryoballoon). Given the relatively novel nature of PEFs, this review aims to provide an understanding of the principles and biophysics of PEF ablation. The goal is to enhance academic research and ultimately enable optimization of ablation parameters to maximize procedure success and minimize risk.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elad Maor
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Freddy Del-Carpio Munoz
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Four Channel 6.5 kV, 65 A, 100 ns–100 µs Generator with Advanced Control of Pulse and Burst Protocols for Biomedical and Biotechnological Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pulsed electric fields in the sub-microsecond range are being increasingly used in biomedical and biotechnology applications, where the demand for high-voltage and high-frequency pulse generators with enhanced performance and pulse flexibility is pushing the limits of pulse power solid state technology. In the scope of this article, a new pulsed generator, which includes four independent MOSFET based Marx modulators, operating individually or combined, controlled from a computer user interface, is described. The generator is capable of applying different pulse shapes, from unipolar to bipolar pulses into biological loads, in symmetric and asymmetric modes, with voltages up to 6.5 kV and currents up to 65 A, in pulse widths from 100 ns to 100 µs, including short-circuit protection, current and voltage monitoring. This new scientific tool can open new research possibility due to the flexibility it provides in pulse generation, particularly in adjusting pulse width, polarity, and amplitude from pulse-to-pulse. It also permits operating in burst mode up to 5 MHz in four independent channels, for example in the application of synchronized asymmetric bipolar pulses, which is shown together with other characteristics of the generator.
Collapse
|
21
|
Pulse Duration Dependent Asymmetry in Molecular Transmembrane Transport Due to Electroporation in H9c2 Rat Cardiac Myoblast Cells In Vitro. Molecules 2021; 26:molecules26216571. [PMID: 34770979 PMCID: PMC8588460 DOI: 10.3390/molecules26216571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive-in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.
Collapse
|
22
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
23
|
Kiester AS, Ibey BL, Coker ZN, Pakhomov AG, Bixler JN. Strobe photography mapping of cell membrane potential with nanosecond resolution. Bioelectrochemistry 2021; 142:107929. [PMID: 34438186 DOI: 10.1016/j.bioelechem.2021.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious electrostimulation). The imagery from this system allows for direct comparison of membrane voltage change to both computationally simulated external electric fields and time-dependent membrane charging models. Acquisition of a full microscope field of view enables the selection of data from multiple cell locations experiencing different electrical fields in a single image sequence for analysis. Using this system, more realistic membrane parameters can be estimated from living cells to better inform predictive models. As a proof of concept, we present evidence that within the range of membrane conductivity used in simulation literature, higher values are likely more valid.
Collapse
Affiliation(s)
- Allen S Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | - Bennett L Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | | | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Joel N Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA.
| |
Collapse
|
24
|
Zhang B, Liu F, Fang Z, Ding L, Moser MAJ, Zhang W. An in vivo study of a custom-made high-frequency irreversible electroporation generator on different tissues for clinically relevant ablation zones. Int J Hyperthermia 2021; 38:593-603. [PMID: 33853496 DOI: 10.1080/02656736.2021.1912417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To examine the ablation zone, muscle contractions, and temperature increases in both rabbit liver and kidney models in vivo for a custom-made high-frequency irreversible electroporation (H-FIRE) generator. MATERIALS AND METHODS A total of 18 New Zealand white rabbits were used to investigate five H-FIRE protocols (n = 3 for each protocol) and an IRE protocol (n = 3) for the performance of the designed H-FIRE device in both liver and kidney tissues. The ablation zone was determined by using histological analysis 72 h after treatment. The extent of muscle contractions and temperature change during the application of pulse energy were measured by a commercial accelerometer attached to animals and fiber optic temperature probe inserted into organs with IRE electrodes, respectively. RESULTS All H-FIRE protocols were able to generate visible ablation zones without muscle contractions, for both liver and kidney tissues. The area of ablation zone generated in H-FIRE pulse protocols (e.g., 0.3-1 μs, 2000 V, and 90-195 bursts) appears similar to that of IRE protocol (100 μs, 1000 V, and 90 pulses) in both liver and kidney tissues. No significant temperature increase was noticed except for the protocol with the highest pulse energy (e.g., 1 μs, 2000 V, and 180 bursts). CONCLUSION Our work serves to complement the current H-FIRE pulse waveforms, which can be optimized to significantly improve the quality of ablation zone in terms of precision for liver and kidney tumors in clinical setting.
Collapse
Affiliation(s)
- Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Fanning Liu
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zheng Fang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lujia Ding
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Kim V, Gudvangen E, Kondratiev O, Redondo L, Xiao S, Pakhomov AG. Peculiarities of Neurostimulation by Intense Nanosecond Pulsed Electric Fields: How to Avoid Firing in Peripheral Nerve Fibers. Int J Mol Sci 2021; 22:ijms22137051. [PMID: 34208945 PMCID: PMC8269031 DOI: 10.3390/ijms22137051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.
Collapse
Affiliation(s)
- Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
| | | | - Luis Redondo
- Lisbon Engineering Superior Institute, GIAAPP/ISEL, 1959-007 Lisbon, Portugal;
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (V.K.); (E.G.); (S.X.)
- Correspondence:
| |
Collapse
|
26
|
Fusco R, Di Bernardo E, D'Alessio V, Salati S, Cadossi M. Reduction of muscle contraction and pain in electroporation-based treatments: An overview. World J Clin Oncol 2021; 12:367-381. [PMID: 34131568 PMCID: PMC8173331 DOI: 10.5306/wjco.v12.i5.367] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the first studies of electrochemotherapy (ECT), small cutaneous metastases were treated and only mild or moderate pain was observed; therefore, pain was not considered a significant issue. As the procedure began to be applied to larger cutaneous metastases, pain was reported more frequently. For that reason, reduction of both muscle contractions and pain have been investigated over the years.
AIM To present an overview of different protocols described in literature that aim to reduce muscle contractions and pain caused by the electroporation (EP) effect in both ECT and irreversible EP treatments.
METHODS Thirty-three studies published between January 1999 and November 2020 were included. Different protocol designs and electrode geometries that reduce patient pain and the number of muscle contractions and their intensity were analysed.
RESULTS The analysis showed that both high frequency and bipolar/biphasic pulses can be used to reduce pain and muscle contractions in patients who undergo EP treatments. Moreover, adequate electrode design can decrease EP-related morbidity. Particularly, needle length, diameter and configuration of the distance between the needles can be optimised so that the muscle volume crossed by the current is reduced as much as possible. Bipolar/biphasic pulses with an inadequate pulse length seem to have a less evident effect on the membrane permeability compared with the standard pulse protocol. For that reason, the number of pulses and the voltage amplitude, as well as the pulse duration and frequency, must be chosen so that the dose of delivered energy guarantees EP efficacy.
CONCLUSION Pain reduction in EP-based treatments can be achieved by appropriately defining the protocol parameters and electrode design. Most results can be achieved with high frequency and/or bipolar/biphasic pulses. However, the efficacy of these alternative protocols remains a crucial point to be assessed further.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Elio Di Bernardo
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Valeria D'Alessio
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Simona Salati
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Matteo Cadossi
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| |
Collapse
|
27
|
High-Frequency and High-Voltage Asymmetric Bipolar Pulse Generator for Electroporation Based Technologies and Therapies. ELECTRONICS 2021. [DOI: 10.3390/electronics10101203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, in high-frequency electroporation, much progress has been made but limited to research groups with custom-made laboratory prototype electroporators. According to the review of electroporators and economic evaluations, there is still an area of pulse parameters that needs to be investigated. The development of an asymmetric bipolar pulse generator with a maximum voltage of 4 kV and minimum duration time of a few hundred nanoseconds, would enable in vivo evaluation of biological effects of high-frequency electroporation pulses. Herein, from a series of most commonly used drivers and optical isolations in high-voltage pulse generators the one with optimal characteristics was used. In addition, the circuit topology of the developed device is described in detail. The developed device is able to generate 4 kV pulses, with theoretical 131 A maximal current and 200 ns minimal pulse duration, the maximal pulse repetition rate is 2 MHz and the burst maximal repetition rate is 1 MHz. The device was tested in vivo. The effectiveness of electrochemotherapy of high-frequency electroporation pulses is compared to “classical” electrochemotherapy pulses. In vivo electrochemotherapy with high-frequency electroporation pulses was at least as effective as with “classical” well-established electric pulses, resulting in 86% and 50% complete responses, respectively. In contrast to previous reports, however, muscle contractions were comparable between the two protocols.
Collapse
|
28
|
Graybill PM, Jana A, Kapania RK, Nain AS, Davalos RV. Single Cell Forces after Electroporation. ACS NANO 2021; 15:2554-2568. [PMID: 33236888 PMCID: PMC10949415 DOI: 10.1021/acsnano.0c07020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exogenous high-voltage pulses increase cell membrane permeability through a phenomenon known as electroporation. This process may also disrupt the cell cytoskeleton causing changes in cell contractility; however, the contractile signature of cell force after electroporation remains unknown. Here, single-cell forces post-electroporation are measured using suspended extracellular matrix-mimicking nanofibers that act as force sensors. Ten, 100 μs pulses are delivered at three voltage magnitudes (500, 1000, and 1500 V) and two directions (parallel and perpendicular to cell orientation), exposing glioblastoma cells to electric fields between 441 V cm-1 and 1366 V cm-1. Cytoskeletal-driven force loss and recovery post-electroporation involves three distinct stages. Low electric field magnitudes do not cause disruption, but higher fields nearly eliminate contractility 2-10 min post-electroporation as cells round following calcium-mediated retraction (stage 1). Following rounding, a majority of analyzed cells enter an unusual and unexpected biphasic stage (stage 2) characterized by increased contractility tens of minutes post-electroporation, followed by force relaxation. The biphasic stage is concurrent with actin disruption-driven blebbing. Finally, cells elongate and regain their pre-electroporation morphology and contractility in 1-3 h (stage 3). With increasing voltages applied perpendicular to cell orientation, we observe a significant drop in cell viability. Experiments with multiple healthy and cancerous cell lines demonstrate that contractile force is a more dynamic and sensitive metric than cell shape to electroporation. A mechanobiological understanding of cell contractility post-electroporation will deepen our understanding of the mechanisms that drive recovery and may have implications for molecular medicine, genetic engineering, and cellular biophysics.
Collapse
Affiliation(s)
- Philip M Graybill
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Aniket Jana
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Scratching the electrode surface: Insights into a high-voltage pulsed-field application from in vitro & in silico studies in indifferent fluid. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Carullo D, Pataro G, Donsì F, Ferrari G. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira Platensis: Effect of Pulse Polarity and Mild Heating. Front Bioeng Biotechnol 2020; 8:551272. [PMID: 33015015 PMCID: PMC7498763 DOI: 10.3389/fbioe.2020.551272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate the effect of the main pulsed electric field (PEF) process parameters on the cell damages of A. platensis microalgae and the extractability of valuable compounds [water-soluble proteins (WSP), C-phycocyanin (C-PC), and carbohydrates (CH)]. Aqueous microalgae suspensions (2%, w/w) were PEF-treated at variable field strength (E = 10, 20, 30 kV/cm), total specific energy (W T = 20, 60, 100 kJ/kgsusp), and inlet temperature (25, 35, 45°C), with either monopolar or bipolar square wave pulses (5 μs of width, delay time between pulses of opposite polarities = 1, 5, 10, 20 μs), prior to extraction with water at room temperature (25°C) for up to 3 h. High-pressure homogenization (HPH) treatment (P = 150 MPa, 3 passes) was used to achieve complete cell disruption to quantify the total extractable content of target intracellular compounds. Scanning electron microscopy (SEM) and optical microscopy analyses clearly showed that PEF merely electroporated the membranes of algae cell, without damaging the cell structure and forming cell debris. The application of PEF treatment (monopolar pulses, 20 kV/cm and 100 kJ/kgsusp) at room temperature significantly enhanced the extraction yield of WSP [17.4% dry weight (DW)], CH (10.1% DW), and C-PC (2.1% DW), in comparison with the untreated samples. Bipolar pulses appeared less effective than monopolar pulses and led to extraction yields dependent on the delay time. Additionally, regardless of pulse polarity, a clear synergistic effect of the combined PEF (20 kV/cm and 100 kJ/kgsusp)-temperature (35°C) treatment was detected, which enabled the extraction of up to 37.4% (w/w) of total WSP, 73.8% of total CH, and 73.7% of total C-PC. Remarkably, the PEF treatment enabled to obtain C-phycocyanin extract with higher purity than that obtained using HPH treatment. The results obtained in this work suggest that the application of PEF combined with mild heating could represent a suitable approach for the efficient recovery of water-soluble compounds microalgal biomass.
Collapse
Affiliation(s)
- Daniele Carullo
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl - University of Salerno, Fisciano, Italy
| |
Collapse
|
31
|
Mamenko T, Kots S. Lipid peroxidation of cell membranes in the formation and regulation of plant protective reactions. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.04.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. Radiol Oncol 2020; 54:317-328. [PMID: 32726295 PMCID: PMC7409611 DOI: 10.2478/raon-2020-0047] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Tumor cells can die via immunogenic cell death pathway, in which damage-associated molecular pattern molecules (DAMPs) are released from the cells. These molecules activate cells involved in the immune response. Both innate and adaptive immune response can be activated, causing a destruction of the remaining infected cells. Activation of immune response is also an important component of tumor treatment with electrochemotherapy (ECT) and irreversible electroporation (IRE). We thus explored, if and when specific DAMPs are released as a consequence of electroporation in vitro. Materials and methods In this in vitro study, 100 μs long electric pulses were applied to a suspension of Chinese hamster ovary cells. The release of DAMPs - specifically: adenosine triphosphate (ATP), calreticulin, nucleic acids and uric acid was investigated at different time points after exposing the cells to electric pulses of different amplitudes. The release of DAMPs was statistically correlated with cell permeabilization and cell survival, e.g. reversible and irreversible electroporation. Results In general, the release of DAMPs increases with increasing pulse amplitude. Concentration of DAMPs depend on the time interval between exposure of the cells to pulses and the analysis. Concentrations of most DAMPs correlate strongly with cell death. However, we detected no uric acid in the investigated samples. Conclusions Release of DAMPs can serve as a marker for prediction of cell death. Since the stability of certain DAMPs is time dependent, this should be considered when designing protocols for detecting DAMPs after electric pulse treatment.
Collapse
|
33
|
Polajžer T, Miklavčič D. Development of adaptive resistance to electric pulsed field treatment in CHO cell line in vitro. Sci Rep 2020; 10:9988. [PMID: 32561789 PMCID: PMC7305184 DOI: 10.1038/s41598-020-66879-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Pulsed electric field treatment has increased over the last few decades with successful translation from in vitro studies into different medical treatments like electrochemotherapy, irreversible electroporation for tumor and cardiac tissue ablation and gene electrotransfer for gene therapy and DNA vaccination. Pulsed electric field treatments are efficient but localized often requiring repeated applications to obtain results due to partial response and recurrence of disease. While these treatment times are several orders of magnitude lower than conventional biochemical treatment, it has been recently suggested that cells may become resistant to electroporation in repetitive treatments. In our study, we evaluate this possibility of developing adaptive resistance in cells exposed to pulsed electric field treatment over successive lifetimes. Mammalian cells were exposed to electroporation pulses for 30 generations. Every 5th generation was analyzed by determining permeabilization and survival curve. No statistical difference between cells in control and cells exposed to pulsed electric field treatment was observed. We offer evidence that electroporation does not affect cells in a way that they would become less susceptible to pulsed electric field treatment. Our findings indicate pulsed electric field treatment can be used in repeated treatments with each treatment having equal efficiency to the initial treatment.
Collapse
Affiliation(s)
- Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
34
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Nath S, Sinha KP, Thaokar RM. Development of transmembrane potential in concentric spherical, confocal spheroidal, and bispherical vesicles subjected to nanosecond-pulse electric field. Phys Rev E 2020; 101:062407. [PMID: 32688463 DOI: 10.1103/physreve.101.062407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Electroporation of concentric compound spherical and confocal spheroidal as well as eccentric compound spherical vesicles, considered to be good models for corresponding nucleate cells, are investigated with an emphasis on their response to nanosecond pulse electric field (nsPEF). Analytical models are developed for the estimation of the transmembrane potential (TMP) across the bilayers of the inner and the outer vesicles and finite-element simulations are also carried out for the eccentric case. Our calculations show that with an increase in the aspect ratio, while the TMP decreases when nsPEF is used, it increases for confocal spheroids when the pulse width is greater than the membrane charging time, leading to fully charged vesicles. Bipolar pulses are shown to effectively control the TMP for a desired time period in the nsPEF regime, and a fast decay of the TMP to zero can be achieved by judicious use of pulse polarity. The external conductivity is found to significantly influence the TMP in nsPEF, unlike millisecond pulses where its effect is insignificant. Additionally the critical electric field required to induce a TMP of 1 V at the inner vesicle is presented for different pulse widths, rise time, as well as membrane capacitance, and the TMP of the outer vesicle is found to be within limits of reversible poration. It is found that the maximum TMP has a roughly linear dependence on the outer aspect ratio of the vesicle. We also introduce a new method to obtain the particular solution to the Laplace equation for bispherical system, and it is validated with finite-element simulations. Our study on nsPEF electroporation of bispherical vesicles shows that the north pole TMP is typically greater than the south pole, thereby suggesting the typical pathway a charged species might take inside an eccentric nucleate cell under electroporation.
Collapse
Affiliation(s)
- Shoubhanik Nath
- Department of Chemical Engineering, IIT Bombay, Mumbai 400076, India
| | | | - Rochish M Thaokar
- Department of Chemical Engineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
36
|
Miklavcic D, Novickij V, Kranjc M, Polajzer T, Haberl Meglic S, Batista Napotnik T, Romih R, Lisjak D. Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry 2020; 132:107440. [DOI: 10.1016/j.bioelechem.2019.107440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
37
|
Pirc E, Reberšek M, Miklavčič D. Functional Requirements and Quality Assurance Necessary for Successful Incorporation of Electroporation-Based Therapies Into Clinical Practice. J Med Device 2020. [DOI: 10.1115/1.4045837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Electroporation-based therapies have a huge potential for implementation into clinical practice in socioeconomically disadvantaged populations. Currently, the price of electroporators and electrodes is relatively high, but custom low budget devices can be developed. In the paper, we describe three most established applications in medicine, with the focus on the basic mechanisms, which should be taken into account during the development process of a clinical electroporator. Also, typical pulse parameters used in each of the described applications are defined. In the second part of the paper, we describe technical functional requirements for a clinical electroporator and safety guidelines, with the focus on medical device standard. At the end of the paper, the focus moves to a more general problematic, such as quality assurance and the importance of measurement during the pulse delivery, which we firmly believe is necessary for successful electroporation.
Collapse
Affiliation(s)
- Eva Pirc
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Matej Reberšek
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Damijan Miklavčič
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
38
|
Wasson EM, Alinezhadbalalami N, Brock RM, Allen IC, Verbridge SS, Davalos RV. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. Bioelectrochemistry 2020; 131:107369. [PMID: 31706114 PMCID: PMC10039453 DOI: 10.1016/j.bioelechem.2019.107369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10μs) in a series of 80-100 bursts (1 burst/s, 100μs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10μs). Furthermore, H-FIRE treatment using 10μs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.
Collapse
Affiliation(s)
- Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
39
|
Polajžer T, Dermol-Černe J, Reberšek M, O'Connor R, Miklavčič D. Cancellation effect is present in high-frequency reversible and irreversible electroporation. Bioelectrochemistry 2019; 132:107442. [PMID: 31923714 DOI: 10.1016/j.bioelechem.2019.107442] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
It was recently suggested that applying high-frequency short biphasic pulses (HF-IRE) reduces pain and muscle contractions in electrochemotherapy and irreversible ablation treatments; however, higher amplitudes with HF-IRE pulses are required to achieve a similar effect as with monophasic pulses. HF-IRE pulses are in the range of a microseconds, thus, the so-called cancellation effect could be responsible for the need to apply pulses of higher amplitudes. In cancellation effect, the effect of first pulse is reduced by the second pulse of opposite polarity. We evaluated cancellation effect with high-frequency biphasic pulses on CHO-K1 in different electroporation buffers. We applied eight bursts of 1-10 µs long pulses with inter-phase delays of 0.5 µs - 10 ms and evaluated membrane permeability and cell survival. In permeability experiments, cancellation effect was not observed in low-conductivity buffer. Cancellation effect was, however, observed in treatments with high-frequency biphasic pulses looking at survival in all of the tested electroporation buffers. In general, cancellation effect depended on inter-phase delay as well as on pulse duration, i.e. longer pulses and longer interphase delay cause less pronounced cancellation effect. Cancellation effect could be partially explained by the assisted discharge and not by the hyperpolarization by the chloride channels.
Collapse
Affiliation(s)
- Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Rodney O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120 Gardanne, France
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Nanosecond pulses targeting intracellular ablation increase destruction of tumor cells with irregular morphology. Bioelectrochemistry 2019; 132:107432. [PMID: 31918056 DOI: 10.1016/j.bioelechem.2019.107432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
The decrease in killing sensitivity of the cell membrane to microsecond pulse electric fields (μs-PEFs) is ascribed mainly to the aberrant morphology of cancer cells, with clear statistical correlations observed between cell size and shape defects and the worsening of the electrical response to the PEF. In this paper, nanosecond pulsed electric fields (ns-PEFs) inducing the nucleus effect and μs-PEFs targeting the cell membrane were combined to enhance destruction of irregular cells. The fluorescence dissipation levels of the nuclear membrane and cell membrane exposed to the μs, ns, and ns + μs pulse protocols were measured and compared, and a dynamic electroporation model of irregular cells was established by the finite element software COMSOL. The results suggest that the cell membrane disruption induced by μs-PEFs is worse for extremely irregular cells and depends strongly on cellular morphology. However, the nuclear membrane disruption induced by ns-PEFs does not scale with irregularity, suggesting the use of a combination of ns-PEFs with μs-PEFs to target the nuclear and cell membranes. We demonstrate that ns + μs pulses can significantly enhance the fluorescence dissipation of the cell and nuclear membranes. Overall, our findings indicate that ns + μs pulses may be useful in the effective killing of irregular cells.
Collapse
|
41
|
The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiol Oncol 2019; 53:194-205. [PMID: 31194692 PMCID: PMC6572501 DOI: 10.2478/raon-2019-0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background In electrochemotherapy (ECT), chemotherapeutics are first administered, followed by short 100 μs monopolar pulses. However, these pulses cause pain and muscle contractions. It is thus necessary to administer muscle relaxants, general anesthesia and synchronize pulses with the heart rhythm of the patient, which makes the treatment more complex. It was suggested in ablation with irreversible electroporation, that bursts of short high-frequency bipolar pulses could alleviate these problems. Therefore, we designed our study to verify if it is possible to use high-frequency bipolar pulses (HF-EP pulses) in electrochemotherapy. Materials and methods We performed in vitro experiments on mouse skin melanoma (B16-F1) cells by adding 1–330 μM cisplatin and delivering either (a) eight 100 μs long monopolar pulses, 0.4–1.2 kV/cm, 1 Hz (ECT pulses) or (b) eight bursts at 1 Hz, consisting of 50 bipolar pulses. One bipolar pulse consisted of a series of 1 μs long positive and 1 μs long negative pulse (0.5–5 kV/cm) with a 1 μs delay in-between. Results With both types of pulses, the combination of electric pulses and cisplatin was more efficient in killing cells than cisplatin or electric pulses only. However, we needed to apply a higher electric field in HF-EP (3 kV/cm) than in ECT (1.2 kV/cm) to obtain comparable cytotoxicity. Conclusions It is possible to use HF-EP in electrochemotherapy; however, at the expense of applying higher electric fields than in classical ECT. The results obtained, nevertheless, offer an evidence that HF-EP could be used in electrochemotherapy with potentially alleviated muscle contractions and pain.
Collapse
|
42
|
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, Eden K, McDaniel DK, Verbridge SS, Rossmeisl JH, Oestreich KJ, Davalos RV, Allen IC. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44:112-125. [PMID: 31130474 PMCID: PMC6606957 DOI: 10.1016/j.ebiom.2019.05.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Background Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Melvin F Lorenzo
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kathleen E Huie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - John H Rossmeisl
- Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kenneth J Oestreich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Virginia Tech, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Rafael V Davalos
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA.
| |
Collapse
|
43
|
Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization. Drug Deliv Transl Res 2018; 8:1152-1161. [PMID: 29752690 DOI: 10.1007/s13346-018-0533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.
Collapse
|
44
|
Sweeney DC, Davalos RV. Discontinuous Galerkin Model of Cellular Electroporation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5850-5853. [PMID: 30441666 DOI: 10.1109/embc.2018.8513541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electroporation (EP) is a phenomenon involving both nonlinear biophysical processes and complex geometries. When exposed to strong electric fields, the formation of pores within a cell membrane increases the membrane permeability. Discontinuous Galerkin (DG) finite element methods can directly enforce these flux jumps across the thin cell membrane interface. We implement a DG finite element method to model the electric field, pore formation, and transmembrane flux of charged solutes during EP. Our model is readily extensible for parallel computation on high performance clusters and agrees with previous reports.
Collapse
|
45
|
Bhonsle S, Lorenzo MF, Safaai-Jazi A, Davalos RV. Characterization of Nonlinearity and Dispersion in Tissue Impedance During High-Frequency Electroporation. IEEE Trans Biomed Eng 2018; 65:2190-2201. [PMID: 29989955 DOI: 10.1109/tbme.2017.2787038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of high-voltage, high-frequency bipolar pulses (HFBPs) is an emerging electroporation-based therapy for the treatment of solid tumors. In this study, we quantify the extent of nonlinearity and dispersion during the HFBP treatment. METHODS We utilize flat-plate electrodes to capture the impedance of the porcine liver tissue during the delivery of a burst of HFBPs of widths 1 and 2 $\mu$s at different pulse amplitudes. Next, we fit the impedance data to a frequency-dependent parallel RC network to determine the conductivity and permittivity of the tissue as a function of frequency, for different applied electric fields. Finally, we present a simple model to approximate the field distribution in the tissue using the conductivity function at a frequency that could minimize the errors due to approximation with a nondispersive model. RESULTS The conductivity/permittivity of the tissue was plotted as a function of frequency for different electric fields. It was found that the extent of dispersion reduces with higher applied electric field magnitudes. CONCLUSION This is the first study to quantify dispersion and nonlinearity in the tissue during the HFBP treatment. The data have been used to predict the field distribution in a numerical model of the liver tissue utilizing two needle electrodes. SIGNIFICANCE The data and technique developed in this study to monitor the electrical properties of tissue during treatment can be used to generate treatment-planning models for future high-frequency electroporation therapies as well as provide insights regarding treatment effect.
Collapse
|
46
|
Valdez CM, Barnes R, Roth CC, Moen E, Ibey B. The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation. Bioelectromagnetics 2018; 39:441-450. [PMID: 29984850 DOI: 10.1002/bem.22134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Nanosecond electric pulse (nsEP) exposure generates an array of physiological effects. The extent of these effects is impacted by whether the nsEP is a unipolar (UP) or bipolar (BP) exposure. A 600 ns pulse can generate 71% more YO-PRO-1 uptake compared to a 600 ns + 600 ns pulse exposure. This observation is termed "bipolar cancellation" (BPC) because despite the BP nsEP consisting of an additional 600 ns pulse, it generates reduced membrane perturbation. BPC is achieved by varying pulse amplitudes, and symmetrical and asymmetric pulse widths. The effect appears to reverse by increasing the interphase interval between symmetric BP pulses, suggesting membrane recovery is a BPC factor. To date, the impact of the interphase interval between asymmetrical BP and other BPC-inducing symmetrical BP nsEPs has not been fully explored. Additionally, interpulse intervals beyond 50 μs have not been explored to understand the impact of time between the BP nsEP phases. Here, we surveyed different interphase intervals among symmetrical and asymmetrical BP nsEPs to monitor their impact on BPC of YO-PRO-1 uptake. We identified that a 10 microsecond (ms) interphase interval within a symmetrical 600 ns + 600 ns, and 900 ns + 900 ns pulse can resolve BPC. Furthermore, the interphase interval to resolve asymmetric BPC from a 300 ns + 900 ns pulse versus 600 ns pulse exposure is greater (<10 ms) compared to symmetrical BP nsEPs. From these findings, we extended on our conceptual model that BPC is balanced by localized charging and discharging events across the membrane. Bioelectromagnetics. 39:441-450, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Chris M Valdez
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| | - Ronald Barnes
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| | - Caleb C Roth
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| | - Erick Moen
- Ming Hsieh Department of Electrical Engineering- Electrophysics, University of Southern California, Los Angeles, California
| | - Bennett Ibey
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| |
Collapse
|
47
|
Dermol-Černe J, Miklavčič D, Reberšek M, Mekuč P, Bardet SM, Burke R, Arnaud-Cormos D, Leveque P, O'Connor R. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 2018; 122:103-114. [PMID: 29621662 DOI: 10.1016/j.bioelechem.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
In electroporation-based medical treatments, excitable tissues are treated, either intentionally (irreversible electroporation of brain cancer, gene electrotransfer or ablation of the heart muscle, gene electrotransfer of skeletal muscles), or unintentionally (excitable tissues near the target area). We investigated how excitable and non-excitable cells respond to electric pulses, and if electroporation could be an effective treatment of the tumours of the central nervous system. For three non-excitable and one excitable cell line, we determined a strength-duration curve for a single pulse of 10ns-10ms. The threshold for depolarization decreased with longer pulses and was higher for excitable cells. We modelled the response with the Lapicque curve and the Hodgkin-Huxley model. At 1μs a plateau of excitability was reached which could explain why high-frequency irreversible electroporation (H-FIRE) electroporates but does not excite cells. We exposed cells to standard electrochemotherapy parameters (8×100μs pulses, 1Hz, different voltages). Cells behaved similarly which indicates that electroporation most probably occurs at the level of lipid bilayer, independently of the voltage-gated channels. These results could be used for optimization of electric pulses to achieve maximal permeabilization and minimal excitation/pain sensation. In the future, it should be established whether the in vitro depolarization correlates to nerve/muscle stimulation and pain sensation in vivo.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Primož Mekuč
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
| | - Sylvia M Bardet
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France.
| | - Ryan Burke
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | | | - Philippe Leveque
- University of Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France.
| | - Rodney O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120 Gardanne, France.
| |
Collapse
|
48
|
Cemazar M, Sersa G, Frey W, Miklavcic D, Teissié J. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 2018; 122:69-76. [PMID: 29571034 DOI: 10.1016/j.bioelechem.2018.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 01/26/2023]
Abstract
Electric field-induced membrane changes are an important approach in the life sciences. However, the developments in knowledge and translational applications face problems of reproducibility. Indeed, a quick survey of the literature reveals a lack of transparent and comprehensive reporting of essential technical information in many papers. Too many of the published scientific papers do not contain sufficient information for proper assessment of the presented results. The general rule/guidance in reporting experimental data should require details on exposure conditions such that other researchers are able to evaluate, judge and reproduce the experiments and data obtained. To enhance dissemination of information and reproducibility of protocols, it is important to agree upon nomenclature and reach a consensus on documentation of experimental methods and procedures. This paper offers recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples in life science.
Collapse
Affiliation(s)
- M Cemazar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje, 42, 6310 Izola, Slovenia
| | - G Sersa
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - W Frey
- Karlsruhe Institute of Technology (KIT), Institute for Pulsed Power and Microwave Technology (IHM), 76344 Eggenstein-Leopoldshafen, Germany
| | - D Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia
| | - J Teissié
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
49
|
Castellví Q, Mercadal B, Moll X, Fondevila D, Andaluz A, Ivorra A. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields. Phys Med Biol 2018; 63:035027. [PMID: 29235992 DOI: 10.1088/1361-6560/aaa16f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.
Collapse
Affiliation(s)
- Quim Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
50
|
Khan NR, Wong TW. 5-Fluorouracil ethosomes - skin deposition and melanoma permeation synergism with microwave. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:568-577. [PMID: 29378453 DOI: 10.1080/21691401.2018.1431650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study focuses on the use of ethosome and microwave technologies to facilitate skin penetration and/or deposition of 5-fluorouracil in vitro and in vivo. Low ethanol ethosomes were designed and processed by mechanical dispersion technique and had their size, zeta potential, morphology, drug content and encapsulation efficiency characterized. The skin was pre-treated with microwave at 2450 MHz for 2.5 min with ethosomes applied topically and subjected to in vitro and in vivo skin drug permeation as well as retention evaluation. The drug and/or ethosomes cytotoxicity, uptake and intracellular trafficking by SKMEL-28 melanoma cell culture were evaluated. Pre-treatment of skin by microwave promoted significant drug deposition in skin from ethosomes in vitro while keeping the level of drug permeation unaffected. Similar observations were obtained in vivo with reduced drug permeation into blood. Combination ethosome and microwave technologies enhanced intracellular localization of ethosomes through fluidization of cell membrane lipidic components as well as facilitating endocytosis by means of clathrin, macropinocytosis and in particularly lipid rafts pathways. The synergistic use of microwave and ethosomes opens a new horizon for skin malignant melanoma treatment.
Collapse
Affiliation(s)
- Nauman Rahim Khan
- a Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE , Selangor , Malaysia.,b Particle Design Research Group, Faculty of Pharmacy , Universiti Teknologi MARA Selangor , Selangor , Malaysia
| | - Tin Wui Wong
- a Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE , Selangor , Malaysia.,b Particle Design Research Group, Faculty of Pharmacy , Universiti Teknologi MARA Selangor , Selangor , Malaysia
| |
Collapse
|