1
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Álvarez-Rodríguez I, Ugarte-Uribe B, de la Arada I, Arrondo JLR, Garbisu C, Alkorta I. Conjugative Coupling Proteins and the Role of Their Domains in Conjugation, Secondary Structure and in vivo Subcellular Location. Front Mol Biosci 2020; 7:185. [PMID: 32850972 PMCID: PMC7431656 DOI: 10.3389/fmolb.2020.00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Type IV Coupling Proteins (T4CPs) are essential elements in many type IV secretion systems (T4SSs). The members of this family display sequence, length, and domain architecture heterogeneity, being the conserved Nucleotide-Binding Domain the motif that defines them. In addition, most T4CPs contain a Transmembrane Domain (TMD) in the amino end and an All-Alpha Domain facing the cytoplasm. Additionally, a few T4CPs present a variable domain at the carboxyl end. The structural paradigm of this family is TrwBR388, the T4CP of conjugative plasmid R388. This protein has been widely studied, in particular the role of the TMD on the different characteristics of TrwBR388. To gain knowledge about T4CPs and their TMD, in this work a chimeric protein containing the TMD of TraJpKM101 and the cytosolic domain of TrwBR388 has been constructed. Additionally, one of the few T4CPs of mobilizable plasmids, MobBCloDF13 of mobilizable plasmid CloDF13, together with its TMD-less mutant MobBΔTMD have been studied. Mating studies showed that the chimeric protein is functional in vivo and that it exerted negative dominance against the native proteins TrwBR388 and TraJpKM101. Also, it was observed that the TMD of MobBCloDF13 is essential for the mobilization of CloDF13 plasmid. Analysis of the secondary structure components showed that the presence of a heterologous TMD alters the structure of the cytosolic domain in the chimeric protein. On the contrary, the absence of the TMD in MobBCloDF13 does not affect the secondary structure of its cytosolic domain. Subcellular localization studies showed that T4CPs have a unipolar or bipolar location, which is enhanced by the presence of the remaining proteins of the conjugative system. Unlike what has been described for TrwBR388, the TMD is not an essential element for the polar location of MobBCloDF13. The main conclusion is that the characteristics described for the paradigmatic TrwBR388 T4CP should not be ascribed to the whole T4CP family. Specifically, it has been proven that the mobilizable plasmid-related MobBCloDF13 presents different characteristics regarding the role of its TMD. This work will contribute to better understand the T4CP family, a key element in bacterial conjugation, the main mechanism responsible for antibiotic resistance spread.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - José Luis R Arrondo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| | - Carlos Garbisu
- NEIKER, Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), Spanish Research Council (CSIC), Leioa, Spain
| |
Collapse
|
3
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
4
|
Mahajan M, Chatterjee D, Bhuvaneswari K, Pillay S, Bhattacharjya S. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:407-415. [PMID: 28988778 PMCID: PMC7094225 DOI: 10.1016/j.bbamem.2017.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/16/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023]
Abstract
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.
Collapse
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepak Chatterjee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kannaian Bhuvaneswari
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shubhadra Pillay
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|