1
|
Das T, Mukhopadhyay C. Comparison and Possible Binding Orientations of SARS-CoV-2 Spike N-Terminal Domain for Gangliosides GM3 and GM1. J Phys Chem B 2023; 127:6940-6948. [PMID: 37523476 DOI: 10.1021/acs.jpcb.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 spike glycoprotein is anchored by gangliosides. The sialic acid in the ganglioside headgroup is responsible for virus attachment and entry into host cells. We used coarse-grained (CG) molecular dynamics simulations to expand on our previous study of GM1 interaction with two different orientations of the SARS-CoV-2 S1 subunit N-terminal domain (NTD) and to confirm the role of sialic acid receptors in driving the viral receptor; GM3 was used as another ganglioside on the membrane. Because of the smaller headgroup, sialic acid is crucial in GM3 interactions, whereas GM1 interacts with NTD via both the sialic acid and external galactose. In line with our previous findings for NTD orientations in GM1 binding, we identified two orientations, "compact" and "distributed", comprising sugar receptor-interacting residues in GM3-embedded lipid bilayers. Gangliosides in closer proximity to the compact NTD orientation might cause relatively greater restrictions to penetrate the bilayer. However, the attachment of a distributed NTD orientation with more negative interaction energies appears to facilitate GM1/GM3 to move quickly across the membrane. Our findings likely shed some light on the orientations that the NTD receptor acquires during the early phases of interaction with GM1 and GM3 in a membrane environment.
Collapse
Affiliation(s)
- Tanushree Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Chaitali Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Kawaguchi K, Nagao H, Shindou H, Noguchi H. Conformations of Three Types of Ultra-Long-Chain Fatty Acids in Multicomponent Lipid Bilayers. J Phys Chem B 2022; 126:9316-9324. [PMID: 36334092 DOI: 10.1021/acs.jpcb.2c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultra-long-chain fatty acids (ULCFAs) are biosynthesized in certain types of tissues, but their biological roles remain unknown. Here, we report how the conformation of ULCFAs depends on the length and unsaturated-bond ratio of the ultra-long chains and the composition of the host bilayer membrane using molecular dynamics simulations. The ultra-long chain of ULCFAs flips between the two leaflets and fluctuates among three conformations: elongated, L-shaped, and turned. Furthermore, we found that the saturated ultra-long chain exhibited an elongated conformation more frequently than the unsaturated chain. In addition, the truncation of the ultra-long chain at C26 had little effect on the remaining ULCFAs. ULCFAs respond to lipid-density differences in the two leaflets, and the ratio of the elongated and turned conformations changed to reduce this difference. However, in cholesterol-containing membranes, ULCFAs exhibit no density difference after the flip-flop of cholesterol removes the difference.
Collapse
Affiliation(s)
- Kazutomo Kawaguchi
- Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Ishikawa, Japan
| | - Hidemi Nagao
- Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Ishikawa, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo162-8655, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa277-8581, Chiba, Japan
| |
Collapse
|
3
|
Pezeshkian W, Shillcock JC, Ipsen JH. Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell. Toxins (Basel) 2021; 13:toxins13070449. [PMID: 34203472 PMCID: PMC8309782 DOI: 10.3390/toxins13070449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023] Open
Abstract
Many bacteria secrete toxic protein complexes that modify and disrupt essential processes in the infected cell that can lead to cell death. To conduct their action, these toxins often need to cross the cell membrane and reach a specific substrate inside the cell. The investigation of these protein complexes is essential not only for understanding their biological functions but also for the rational design of targeted drug delivery vehicles that must navigate across the cell membrane to deliver their therapeutic payload. Despite the immense advances in experimental techniques, the investigations of the toxin entry mechanism have remained challenging. Computer simulations are robust complementary tools that allow for the exploration of biological processes in exceptional detail. In this review, we first highlight the strength of computational methods, with a special focus on all-atom molecular dynamics, coarse-grained, and mesoscopic models, for exploring different stages of the toxin protein entry mechanism. We then summarize recent developments that are significantly advancing our understanding, notably of the glycolipid–lectin (GL-Lect) endocytosis of bacterial Shiga and cholera toxins. The methods discussed here are also applicable to the design of membrane-penetrating nanoparticles and the study of the phenomenon of protein phase separation at the surface of the membrane. Finally, we discuss other likely routes for future development.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| | - Julian C. Shillcock
- Blue Brain Project, Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - John H. Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| |
Collapse
|
4
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
5
|
Kawaguchi K, Nakagawa KM, Nakagawa S, Shindou H, Nagao H, Noguchi H. Conformation of ultra-long-chain fatty acid in lipid bilayer: Molecular dynamics study. J Chem Phys 2020; 153:165101. [PMID: 33138431 DOI: 10.1063/5.0026030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultra-long-chain fatty acids (ULCFAs) are biosynthesized in the restricted tissues such as retina, testis, and skin. The conformation of a single ULCFA, in which the sn-1 unsaturated chain has 32 carbons, in three types of phospholipid bilayers is studied by molecular dynamics simulations. It is found that the ultra-long tail of the ULCFA flips between two leaflets and fluctuates among an elongation into the opposite leaflet, lies between two leaflets, and turns back. As the number ratio of lipids in the opposite leaflet increases, the ratio of the elongated shape linearly decreases in all three cases. Thus, ULCFAs can sense the density differences between the two leaflets and respond to these changes.
Collapse
Affiliation(s)
- Kazutomo Kawaguchi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Koh M Nakagawa
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Satoshi Nakagawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hidemi Nagao
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
6
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
7
|
Seo S, Murata M, Shinoda W. Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations. J Phys Chem Lett 2020; 11:5171-5176. [PMID: 32515980 DOI: 10.1021/acs.jpclett.0c01317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The asymmetric lipid composition in plasma membranes within the inner leaflet is not typically suitable for domain formation. Thus elucidation of the likelihood of the formation or stability of a raft-like domain in the inner leaflet is necessary. Herein we investigated the phase behavior of asymmetric membranes using coarse-grained molecular dynamics simulations. The lipid leaflet comprising dioleoylphosphatidylcholine (DOPC) and cholesterol (Chol) does not typically show well-developed domains in symmetric bilayer membranes; however, it does separate into liquid ordered (Lo) and liquid disordered (Ld) phases when the opposing leaflet containing sphingomyelin (SM), DOPC, and Chol demonstrates domain formation. We determine that interdigitated acyl chains modulated the partitioning of Chol in the opposing leaflet, resulting in phase separation. Similarly, the acyl chain length of SM within the opposing leaflet affected the phase behavior of the leaflet. Our results reveal the crucial role of interdigitation in determining the phase status in asymmetric membranes.
Collapse
Affiliation(s)
- Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Korean Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Michio Murata
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
8
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophys J 2019; 117:1215-1223. [PMID: 31542224 DOI: 10.1016/j.bpj.2019.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Gangliosides (GMs) form an important class of lipids found in the outer leaflet of the plasma membrane. Typically, they colocalize with cholesterol and sphingomyelin in ordered membrane domains. However, detailed understanding of the lateral organization of GM-rich membranes is still lacking. To gain molecular insight, we performed molecular dynamics simulations of GMs in model membranes composed of coexisting liquid-ordered and liquid-disordered domains. We found that GMs indeed have a preference to partition into the ordered domains. At higher concentrations (>10 mol %), we observed a destabilizing effect of GMs on the phase coexistence. Further simulations with modified GMs show that the structure of the GM headgroup affects the phase separation, whereas the nature of the tail determines the preferential location. Together, our findings provide a molecular basis to understand the lateral organization of GM-rich membranes.
Collapse
|
10
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
11
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
12
|
Manna M, Nieminen T, Vattulainen I. Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes. Annu Rev Biophys 2019; 48:421-439. [DOI: 10.1146/annurev-biophys-052118-115553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell signaling controls essentially all cellular processes. While it is often assumed that proteins are the key architects coordinating cell signaling, recent studies have shown more and more clearly that lipids are also involved in signaling processes in a number of ways. Lipids do, for instance, act as messengers, modulate membrane receptor conformation and dynamics, and control membrane receptor partitioning. Further, through structural modifications such as oxidation, the functions of lipids as part of signaling processes can be modified. In this context, in this article we discuss the understanding recently revealed by atomistic and coarse-grained computer simulations of nanoscale processes and underlying physicochemical principles related to lipids’ functions in cellular signaling.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Thallmair S, Ingólfsson HI, Marrink SJ. Cholesterol Flip-Flop Impacts Domain Registration in Plasma Membrane Models. J Phys Chem Lett 2018; 9:5527-5533. [PMID: 30192549 PMCID: PMC6151656 DOI: 10.1021/acs.jpclett.8b01877] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 05/25/2023]
Abstract
The plasma membrane is a highly complex multicomponent system that is central to the functioning of cells. Cholesterol, a key lipid component of the plasma membrane, promotes the formation of nanodomains. These nanodomains are often correlated across the two membrane leaflets, but the underlying physical mechanism remains unclear. Using coarse-grained molecular dynamics simulations, we investigate the influence of cholesterol flip-flop on membrane properties, in particular, the interleaflet coupling of cholesterol-enriched domains. We show that the cholesterol density correlation between the leaflets of an average mammalian plasma membrane is significantly reduced by suppressing interleaflet cholesterol population. Our results suggest an amplifying role of cholesterol in signal transduction across the leaflets.
Collapse
Affiliation(s)
- Sebastian Thallmair
- Groningen
Biomolecular Sciences and Biotechnology Institute and The Zernike
Institute for Advanced Material, University
of Groningen, Nijenborgh
7, 9747 AG Groningen, Netherlands
| | - Helgi I. Ingólfsson
- Groningen
Biomolecular Sciences and Biotechnology Institute and The Zernike
Institute for Advanced Material, University
of Groningen, Nijenborgh
7, 9747 AG Groningen, Netherlands
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 94550 California, United States
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and The Zernike
Institute for Advanced Material, University
of Groningen, Nijenborgh
7, 9747 AG Groningen, Netherlands
| |
Collapse
|
14
|
Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience 2018; 384:214-223. [DOI: 10.1016/j.neuroscience.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
15
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
17
|
Johnson QR, Mostofian B, Fuente Gomez G, Smith JC, Cheng X. Effects of carotenoids on lipid bilayers. Phys Chem Chem Phys 2018; 20:3795-3804. [PMID: 29349456 DOI: 10.1039/c7cp07126d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.
Collapse
Affiliation(s)
- Quentin R Johnson
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|